RNA-Seq Transcriptome Analysis of Potato with Differential Tolerance to Bentazone Herbicide

被引:6
|
作者
Guo, Jing [1 ]
Song, Xiuli [2 ]
Sun, Shiqi [1 ]
Shao, Baihui [1 ]
Tao, Bo [1 ]
Zhang, Lili [1 ]
机构
[1] Northeast Agr Univ, Coll Agron, Harbin 150030, Peoples R China
[2] Lingnan Normal Univ, Coll Geog Sci, Zhanjiang 524048, Peoples R China
来源
AGRONOMY-BASEL | 2021年 / 11卷 / 05期
关键词
potato; bentazone; transcriptome; KEGG; candidate gene; METABOLISM; SEQUENCE; GENE; RESISTANCE; SELECTION; PLANTS;
D O I
10.3390/agronomy11050897
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Potato (Solanum tuberosum), an important food crop worldwide, is threatened by broadleaf weeds. Bentazone is an effective herbicide for controlling weeds; however, as a photosynthesis inhibitor, it can also affect potato plants. Therefore, screening potato seedlings for bentazone resistance and determining the genes involved is essential. Herein, we selected potato varieties with tolerance and sensitivity to bentazone. The photosynthetic rate of sensitive plants was notably affected by bentazone application, whereas the tolerant plants showed a significantly higher photosynthetic rate. We observed 95.7% bentazone degradation within 24 d after application in the tolerant plants. Transcriptome sequencing revealed that the numbers of differentially expressed genes (DEGs) between the tolerant and sensitive potato seedlings were 2703 and 11,024 before and after bentazone application, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the majority of DEGs were enriched in metabolic pathways, biosynthesis of secondary metals, carbon metabolism, glutathione metabolism, and photosynthesis. Polyphenol oxidase (PPO), flavonoid 3',5'-methyltransferase-like (AOMT3), ribulose bisphosphate carboxylase small chain C (RBCS-C), and chalcone synthase 2 (CHS2) were identified as candidates contributing to bentazone tolerance. These results provide a theoretical basis for selecting potato stress-resistant resources in the future.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] RNA-Seq transcriptome analysis of Amaranthus palmeri with differential tolerance to glufosinate herbicide
    Sales-Perez, Reiofeli A.
    Saski, Christopher A.
    Noorai, Rooksana E.
    Srivastava, Subodh K.
    Lawton-Rauh, Amy L.
    Nichols, Robert L.
    Roma-Burgos, Nilda
    PLOS ONE, 2018, 13 (04):
  • [2] RNA-Seq methods for transcriptome analysis
    Hrdlickova, Radmila
    Toloue, Masoud
    Tian, Bin
    WILEY INTERDISCIPLINARY REVIEWS-RNA, 2017, 8 (01)
  • [3] Analysis of the Pain Transcriptome Using RNA-Seq
    Goswami, Samridhi
    Mishra, Santosh
    Hoon, Mark
    Mannes, Andrew
    Iadarola, Michael
    NEUROPSYCHOPHARMACOLOGY, 2013, 38 : S352 - S352
  • [4] RNA-SEQ ANALYSIS OF THE HUMAN ALCOHOLIC TRANSCRIPTOME
    Farris, S. P.
    Harris, R. A.
    Mayfield, R. D.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2013, 37 : 126A - 126A
  • [5] Taming the Transcriptome with RNA-Seq
    Stein R.A.
    2018, Mary Ann Liebert Inc. (38): : 10 - 12
  • [6] RNA-seq dissects the transcriptome
    Genet. Eng. Biotechnol. News, 13 (20-22):
  • [7] Comparative Transcriptome Analysis of Two Aegilops tauschii with Contrasting Drought Tolerance by RNA-Seq
    Zhao, Xinpeng
    Bai, Shenglong
    Li, Lechen
    Han, Xue
    Li, Jiahui
    Zhu, Yumeng
    Fang, Yuan
    Zhang, Dale
    Li, Suoping
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (10)
  • [8] RNA-seq analysis of the C. briggsae transcriptome
    Uyar, Bora
    Chu, Jeffrey S. C.
    Vergara, Ismael A.
    Chua, Shu Yi
    Jones, Martin R.
    Wong, Tammy
    Baillie, David L.
    Chen, Nansheng
    GENOME RESEARCH, 2012, 22 (08) : 1567 - 1580
  • [9] Transcriptome analysis of wheat grain using RNA-Seq
    Liu WEI
    Zhihui WU
    Yufeng ZHANG
    Dandan GUO
    Yuzhou XU
    Weixia CHEN
    Haiying ZHOU
    Mingshan YOU
    Baoyun LI
    Frontiers of Agricultural Science and Engineering, 2014, 1 (03) : 214 - 222
  • [10] Transcriptome analysis of wheat grain using RNA-Seq
    Wei, Liu
    Wu, Zhihui
    Zhang, Yufeng
    Guo, Dandan
    Xu, Yuzhou
    Chen, Weixia
    Zhou, Haiying
    You, Mingshan
    Li, Baoyun
    FRONTIERS OF AGRICULTURAL SCIENCE AND ENGINEERING, 2014, 1 (03) : 214 - 222