On a non-homogeneous version of a problem of Firey

被引:6
|
作者
Saroglou, Christos [1 ]
机构
[1] Univ Ioannina, Dept Math, Ioannina 45110, Greece
关键词
GAUSS CURVATURE FLOW; P-MINKOWSKI PROBLEM; HYPERSURFACES; REGULARITY; SHAPES;
D O I
10.1007/s00208-021-02225-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the uniqueness for the Monge-Ampere type equation det(u(ij) + delta(ij)u)(i,j=1)(n-1) = G(u), on Sn-1, (1) where u is the restriction of the support function on the sphere Sn-1, of a convex body that contains the origin in its interior and G : (0, infinity) -> (0, infinity) is a continuous function. The problem was initiated by Firey (Mathematika 21(1): 1-11, 1974) who, in the case G(theta) = theta(-1), asked if u equivalent to 1 is the unique solution to (1). Recently, Brendle et al. (Acta Mathe 219(1): 1-16, 2017) proved that if G(theta) = theta(-p), p > -n - 1, then u has to be constant, providing in particular a complete solution to Firey's problem. Our primary goal is to obtain uniqueness (or nearly uniqueness) results for (1) for a broader family of functions G. Our approach is very different than the techniques developed in Brendle et al. (2017).
引用
收藏
页码:1059 / 1090
页数:32
相关论文
共 50 条
  • [1] On a non-homogeneous version of a problem of Firey
    Christos Saroglou
    Mathematische Annalen, 2022, 382 : 1059 - 1090
  • [2] THE CRACK PROBLEM FOR A NON-HOMOGENEOUS PLANE
    DELALE, F
    ERDOGAN, F
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1983, 50 (03): : 609 - 614
  • [3] On a non-homogeneous shallow-water problem
    Chatelon, FJ
    Orenga, P
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1997, 31 (01): : 27 - 55
  • [4] Existence of Solutions for a Non-homogeneous Neumann Problem
    Kouhestani, Najmeh
    Mahyar, Hakimeh
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (06)
  • [5] Existence of Solutions for a Non-homogeneous Neumann Problem
    Najmeh Kouhestani
    Hakimeh Mahyar
    Mediterranean Journal of Mathematics, 2021, 18
  • [6] On the existence and non-uniqueness of non-homogeneous Blasuis problem
    Allan, FM
    Abu-Saris, RM
    PROCEEDINGS OF THE MATHEMATICS CONFERENCE, 2000, : 19 - 28
  • [7] The free boundary for a semilinear non-homogeneous Bernoulli problem
    Du, Lili
    Yang, Chunlei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 401 : 183 - 230
  • [8] Non-Homogeneous Riemann Boundary Value Problem with Radicals
    Lu Jian-ke School of Mathematics and Statistics
    WuhanUniversityJournalofNaturalSciences, 2002, (04) : 379 - 382
  • [9] Bloch wave homogenization of a non-homogeneous Neumann problem
    Ortega, Jaime
    Martin, Jorge San
    Smaranda, Loredana
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (06): : 969 - 993
  • [10] The Boussinesq–Mindlin problem for a non-homogeneous elastic halfspace
    A. P. S. Selvadurai
    A. Katebi
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67