Criegee Intermediate Reactions with Carboxylic Acids: A Potential Source of Secondary Organic Aerosol in the Atmosphere

被引:102
|
作者
Chhantyal-Pun, Rabi [1 ]
Rotavera, Brandon [2 ,4 ,5 ]
McGillen, Max R. [1 ]
Khan, M. Anwar H. [1 ]
Eskola, Arkke J. [2 ,6 ]
Caravan, Rebecca L. [2 ]
Blacker, Lucy [1 ]
Tew, David P. [1 ,7 ]
Osborn, David L. [2 ]
Percival, Carl J. [3 ]
Taatjes, Craig A. [2 ]
Shallcross, Dudley E. [1 ]
Orr-Ewing, Andrew J. [1 ]
机构
[1] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
[2] Sandia Natl Labs, Combust Res Facil, Mail Stop 9055, Livermore, CA 94551 USA
[3] Jet Prop Lab, Mail Stop 183-901,4800 Oak Dr, Pasadena, CA 92209 USA
[4] Univ Georgia, Dept Chem, Athens, GA 30602 USA
[5] Univ Georgia, Sch Environm Civil Agr & Mech Engn, Athens, GA 30602 USA
[6] Univ Helsinki, Dept Chem, AI Virtasen Aukio 1, FI-00560 Helsinki, Finland
[7] Max Planck Inst Solid State Res, Heisenberg Str 1, D-70569 Stuttgart, Germany
来源
ACS EARTH AND SPACE CHEMISTRY | 2018年 / 2卷 / 08期
基金
美国能源部; 英国自然环境研究理事会;
关键词
Criegee Intermediate; Carboxylic Acids; Atmospheric Chemistry; Hydroperoxide Ester; SOA; DICARBOXYLIC-ACIDS; ALPHA-PINENE; VOLATILITY; KINETICS; HYDROPEROXIDES; OZONOLYSIS; TRANSITION; EMISSIONS; DESIGN; CH2OO;
D O I
10.1021/acsearthspacechem.8b00069
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Trace atmospheric concentrations of carboxylic acids have a potent effect upon the environment, where they modulate aqueous chemistry and perturb Earth's radiative balance. Halogenated carboxylic acids are produced by the tropospheric oxidation of halocarbons and are considered persistent pollutants because of their weak tropospheric and aqueous sinks. However, recent studies reported rapid reactions between selected carboxylic acids and Criegee intermediates, which may provide an efficient gas-phase removal process. Accordingly, absolute rate coefficients of two Criegee intermediates, CH2OO and (CH3)(2)COO, with a suite of carboxylic acids (HCOOH, CH3COOH, CClF2COOH, CF3CF2COOH, and pyruvic acid) were measured with a view to develop a structure activity relationship (SAR). This SAR is based upon the dipole-capture model and predicts the reactivity of many further combinations of Criegee intermediates and carboxylic acids. Complementary synchrotron-based photoionization mass spectrometry measurements demonstrate that these reactions produce stable ester adducts, with a reaction coordinate involving transfer of the acidic hydrogen from the carboxylic acid to the terminal oxygen of the Criegee intermediate. The adduct products are predicted to have low vapor pressures, and coupling of this chemistry with a global atmospheric chemistry and transport model shows significant production of secondary organic aerosol at locations rich in biogenic alkene emissions.
引用
收藏
页码:833 / 842
页数:19
相关论文
共 50 条
  • [1] Criegee Intermediate-Alcohol Reactions, A Potential Source of Functionalized Hydroperoxides in the Atmosphere
    McGillen, Max R.
    Curchod, Basile F. E.
    Chhantyal-Pun, Rabi
    Beames, Joseph M.
    Watson, Nathan
    Khan, M. Anwar H.
    McMahon, Laura
    Shallcross, Dudley E.
    Orr-Ewing, Andrew J.
    [J]. ACS EARTH AND SPACE CHEMISTRY, 2017, 1 (10): : 664 - 672
  • [2] Impact of Criegee Intermediate Reactions with Peroxy Radicals on Tropospheric Organic Aerosol
    Chhantyal-Pun, Rabi
    Khan, M. Anwar H.
    Zachhuber, Nicholas
    Percival, Carl J.
    Shallcross, Dudley E.
    Orr-Ewing, Andrew J.
    [J]. ACS EARTH AND SPACE CHEMISTRY, 2020, 4 (10): : 1743 - 1755
  • [3] Role of stabilized Criegee Intermediate in secondary organic aerosol formation from the ozonolysis of α-cedrene
    Yao, Lei
    Ma, Yan
    Wang, Lin
    Zheng, Jun
    Khalizov, Alexei
    Chen, Mindong
    Zhou, Yaoyao
    Qi, Lu
    Cui, Fenping
    [J]. ATMOSPHERIC ENVIRONMENT, 2014, 94 : 448 - 457
  • [4] Oligomerization Reaction of the Criegee Intermediate Leads to Secondary Organic Aerosol Formation in Ethylene Ozonolysis
    Sakamoto, Yosuke
    Inomata, Satoshi
    Hirokawa, Jun
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (48): : 12912 - 12921
  • [5] Effect of oligomerization reactions of Criegee intermediate with organic Chock for acid/peroxy radical on secondary organic aerosol formation from isoprene ozonolysis
    Chen, Long
    Huang, Yu
    Xue, Yonggang
    Cao, Junji
    Wang, Werthang
    [J]. ATMOSPHERIC ENVIRONMENT, 2018, 187 : 218 - 229
  • [6] Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones
    Jalan, Amrit
    Allen, Joshua W.
    Green, William H.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (39) : 16841 - 16852
  • [7] Intermediate-Volatility Organic Compounds: A Large Source of Secondary Organic Aerosol
    Zhao, Yunliang
    Hennigan, Christopher J.
    May, Andrew A.
    Tkacik, Daniel S.
    de Gouw, Joost A.
    Gilman, Jessica B.
    Kuster, William C.
    Borbon, Agnes
    Robinson, Allen L.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (23) : 13743 - 13750
  • [8] Heterogeneous Glyoxal Oxidation: A Potential Source of Secondary Organic Aerosol
    Connelly, B. M.
    De Haan, D. O.
    Tolbert, M. A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (24): : 6180 - 6187
  • [9] Secondary Organic Aerosol-Forming Reactions of Glyoxal with Amino Acids
    De Haan, David O.
    Corrigan, Ashley L.
    Smith, Kyle W.
    Stroik, Daniel R.
    Turley, Jacob J.
    Lee, Frances E.
    Tolbert, Margaret A.
    Jimenez, Jose L.
    Cordova, Kyle E.
    Ferrell, Grant R.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (08) : 2818 - 2824
  • [10] Observational evidence for Criegee intermediate oligomerization reactions relevant to aerosol formation in the troposphere
    R. L. Caravan
    T. J. Bannan
    F. A. F. Winiberg
    M. A. H. Khan
    A. C. Rousso
    A. W. Jasper
    S. D. Worrall
    A. Bacak
    P. Artaxo
    J. Brito
    M. Priestley
    J. D. Allan
    H. Coe
    Y. Ju
    D. L. Osborn
    N. Hansen
    S. J. Klippenstein
    D. E. Shallcross
    C. A. Taatjes
    C. J. Percival
    [J]. Nature Geoscience, 2024, 17 : 219 - 226