Improving axial resolution in Structured Illumination Microscopy using deep learning

被引:11
|
作者
Boland, Miguel A. [1 ]
Cohen, Edward A. K. [1 ]
Flaxman, Seth R. [1 ]
Neil, Mark A. A. [1 ]
机构
[1] Imperial Coll, Dept Math, South Kensington Campus,180 Queens Gate, London SW7 2RH, England
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
microscopy; deep learning; structure illumination; residual channel attention network; Structured Illumination Microscopy; FLUORESCENCE MICROSCOPY; SUPERRESOLUTION; CELLS; LIVE;
D O I
10.1098/rsta.2020.0298
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structured Illumination Microscopy (SIM) is a widespread methodology to image live and fixed biological structures smaller than the diffraction limits of conventional optical microscopy. Using recent advances in image up-scaling through deep learning models, we demonstrate a method to reconstruct 3D SIM image stacks with twice the axial resolution attainable through conventional SIM reconstructions. We further demonstrate our method is robust to noise and evaluate it against two-point cases and axial gratings. Finally, we discuss potential adaptions of the method to further improve resolution. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 1)'.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Deep Learning Structured Illumination Microscopy
    Shterman, Doron
    Feinberg, Gilad
    Tsesses, Shai
    Blau, Yochai
    Bartal, Guy
    [J]. 2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [2] Deep learning for blind structured illumination microscopy
    Xypakis, Emmanouil
    Gosti, Giorgio
    Giordani, Taira
    Santagati, Raffaele
    Ruocco, Giancarlo
    Leonetti, Marco
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Deep learning for blind structured illumination microscopy
    Emmanouil Xypakis
    Giorgio Gosti
    Taira Giordani
    Raffaele Santagati
    Giancarlo Ruocco
    Marco Leonetti
    [J]. Scientific Reports, 12
  • [4] Concepts for structured illumination microscopy with extended axial resolution through mirrored illumination
    Manton, James D.
    Strohl, Florian
    Fiolka, Reto
    Kaminski, Clemens F.
    Rees, Eric J.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2020, 11 (04) : 2098 - 2108
  • [5] Super-resolution reconstruction of structured illumination microscopy using deep-learning and sparse deconvolution
    Song, Liangfeng
    Liu, Xin
    Xiong, Zihan
    Ahamed, Mostak
    An, Sha
    Zheng, Juanjuan
    Ma, Ying
    Gao, Peng
    [J]. OPTICS AND LASERS IN ENGINEERING, 2024, 174
  • [6] Fast structured illumination microscopy via deep learning
    CHANG LING
    CHONGLEI ZHANG
    MINGQUN WANG
    FANFEI MENG
    LUPING DU
    XIAOCONG YUAN
    [J]. Photonics Research, 2020, 8 (08) : 1350 - 1359
  • [7] Fast structured illumination microscopy via deep learning
    Ling, Chang
    Zhang, Chonglei
    Wang, Mingqun
    Meng, Fanfei
    Du, Luping
    Yuan, Xiaocong
    [J]. PHOTONICS RESEARCH, 2020, 8 (08) : 1350 - 1359
  • [8] Fast structured illumination microscopy via deep learning
    CHANG LING
    CHONGLEI ZHANG
    MINGQUN WANG
    FANFEI MENG
    LUPING DU
    XIAOCONG YUAN
    [J]. Photonics Research, 2020, (08) : 1350 - 1359
  • [9] Deep learning approach for nonlinear structured illumination microscopy
    Ling, Chang
    Du, Luping
    Yuan, Xiaocong
    [J]. AOPC 2020: DISPLAY TECHNOLOGY; PHOTONIC MEMS, THZ MEMS, AND METAMATERIALS; AND AI IN OPTICS AND PHOTONICS, 2020, 11565
  • [10] Advancement in Structured Illumination Microscopy Based on Deep Learning
    Li, Xinran
    Chen, Jiajie
    Wang, Meiting
    Zheng, Xiaomin
    Du, Peng
    Zhong, Yili
    Dai, Xiaoqi
    Qu, Junle
    Shao, Yonghong
    [J]. Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51 (21):