Non-invertible-element constacyclic codes over finite PIRs

被引:0
|
作者
Liu, Hongwei [1 ]
Liu, Jingge [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
关键词
Finite commutative PIR; Finite commutative chain ring; Constacyclic code; Minimum Hamming distance; CYCLIC CODES; NEGACYCLIC CODES; LENGTH 2(S); PREPARATA; KERDOCK; RINGS; Z(4);
D O I
10.1016/j.ffa.2021.101878
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce the notion of lambda-constacyclic codes over finite rings R for arbitrary element lambda of R. We study the non-invertible-element constacyclic codes (NIE-constacyclic codes) over finite principal ideal rings (PIRs). We determine the algebraic structures of all NIE-constacyclic codes over finite chain rings, give the unique form of the sets of the defining polynomials and obtain their minimum Hamming distances. A general form of the duals of NIE-constacyclic codes over finite chain rings is also provided. In particular, we give a necessary and sufficient condition for the dual of an NIE-constacyclic code to be an NIE-constacyclic code. Using the Chinese Remainder Theorem, we study the NIE-constacyclic codes over finite PIRs. Furthermore, we construct some optimal NIE-constacyclic codes over finite PIRs in the sense that they achieve the maximum possible minimum Hamming distances for some given lengths and cardinalities. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Constacyclic codes over finite fields
    Chen, Bocong
    Fan, Yun
    Lin, Liren
    Liu, Hongwei
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (06) : 1217 - 1231
  • [2] On constacyclic codes over finite fields
    Anuradha Sharma
    Saroj Rani
    Cryptography and Communications, 2016, 8 : 617 - 636
  • [3] On constacyclic codes over finite fields
    Sharma, Anuradha
    Rani, Saroj
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2016, 8 (04): : 617 - 636
  • [4] A class of constacyclic codes over a finite field
    Bakshi, Gurmeet K.
    Raka, Madhu
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (02) : 362 - 377
  • [5] On constacyclic codes over finite chain rings
    Cao, Yonglin
    FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 : 124 - 135
  • [6] λ-CONSTACYCLIC CODES OVER FINITE KRASNER HYPERFIELDS
    Al-Tahan, Madeleine
    Davvaz, Bijan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (01): : 1 - 16
  • [7] LCP of constacyclic codes over finite chain rings
    Thakral, Ridhima
    Dutt, Sucheta
    Sehmi, Ranjeet
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) : 1989 - 2001
  • [8] Constacyclic and cyclic codes over finite chain rings
    National Key Laboratory, ISN, Xidian University, Xi'an, 710071, China
    J. China Univ. Post Telecom., 2009, 3 (122-125):
  • [10] LCP of constacyclic codes over finite chain rings
    Ridhima Thakral
    Sucheta Dutt
    Ranjeet Sehmi
    Journal of Applied Mathematics and Computing, 2023, 69 : 1989 - 2001