Conformal invariance in (2+1)-dimensional stochastic systems

被引:3
|
作者
Moriconi, L. [1 ]
Moriconi, M. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil
[2] Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 04期
关键词
SLE;
D O I
10.1103/PhysRevE.81.041105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Stochastic partial differential equations can be used to model second-order thermodynamical phase transitions, as well as a number of critical out-of-equilibrium phenomena. In (2+1) dimensions, many of these systems are conjectured (and some are indeed proved) to be described by conformal field theories. We advance, in the framework of the Martin-Siggia-Rose field-theoretical formalism of stochastic dynamics, a general solution of the translation Ward identities, which yields a putative conformal energy-momentum tensor. Even though the computation of energy-momentum correlators is obstructed, in principle, by dimensional reduction issues, these are bypassed by the addition of replicated fields to the original (2+1)-dimensional model. The method is illustrated with an application to the Kardar-Parisi-Zhang (KPZ) model of surface growth. The consistency of the approach is checked by means of a straightforward perturbative analysis of the KPZ ultraviolet region, leading, as expected, to its c=1 conformal fixed point.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Conformal invariance of isoheight lines of the (2+1)-dimensional etching surfaces
    Xun Zhi-Peng
    Tang Gang
    Xia Hui
    Hao Da-Peng
    Song Li-Jian
    Yang Yi
    [J]. ACTA PHYSICA SINICA, 2014, 63 (15)
  • [2] Conformal Invariance of Isoheight Lines of the (2+1)-Dimensional Wolf-Villain Surfaces
    Yuling Chen
    Gang Tang
    Kui Han
    Hui Xia
    Dapeng Hao
    Zhipeng Xun
    Rongji Wen
    [J]. Journal of Statistical Physics, 2011, 143 : 501 - 508
  • [3] Conformal Invariance of Isoheight Lines of the (2+1)-Dimensional Wolf-Villain Surfaces
    Chen, Yuling
    Tang, Gang
    Han, Kui
    Xia, Hui
    Hao, Dapeng
    Xun, Zhipeng
    Wen, Rongji
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2011, 143 (03) : 501 - 508
  • [4] CONFORMAL INVARIANCE OF CONTOUR LINES ON THE (2+1)-DIMENSIONAL RESTRICTED SOLID-ON-SOLID SURFACE
    Zhou, Wei
    Tang, Gang
    Han, Kui
    Xia, Hui
    Hao, Da-Peng
    Xun, Zhi-Peng
    Yang, Xi-Quan
    Chen, Yu-Ling
    Wen, Rong-Ji
    [J]. MODERN PHYSICS LETTERS B, 2011, 25 (04): : 255 - 264
  • [5] Gauge invariance of (2+1)-dimensional QED
    Tyutin, IV
    Zeitlin, VY
    [J]. PHYSICS OF ATOMIC NUCLEI, 1998, 61 (12) : 2165 - 2174
  • [6] Conformal invariance in conditioned stochastic particle systems
    Schuetz, Gunter M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (31)
  • [7] Conformal gauge theory of (2+1)-dimensional gravity
    Stedile, E
    Duarte, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (03) : 1485 - 1500
  • [8] CONFORMAL-INVARIANCE AT A DECONFINEMENT PHASE-TRANSITION IN (2+1) DIMENSIONS
    CHRISTENSEN, J
    DAMGAARD, PH
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (20) : 2495 - 2498
  • [9] ON (2+1)-DIMENSIONAL ERMAKOV SYSTEMS
    ROGERS, C
    HOENSELAERS, C
    RAY, JR
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (11): : 2625 - 2633
  • [10] Stochastic processes and conformal invariance
    de Gier, J
    Nienhuis, B
    Pearce, PA
    Rittenberg, V
    [J]. PHYSICAL REVIEW E, 2003, 67 (01):