Controls of Amorphous Organic Matter on the Hydrocarbon Generation Potential of Lacustrine Shales: A Case Study on the Chang 7 Member of Yanchang Formation, Ordos Basin, North China

被引:1
|
作者
Teng, Juan [1 ,2 ]
Deng, Hucheng [1 ,2 ]
Xia, Yu [1 ]
Chen, Wenling [1 ,2 ]
Fu, Meiyan [1 ,2 ]
机构
[1] Chengdu Univ Technol, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610059, Sichuan, Peoples R China
[2] Chengdu Univ Technol, Coll Energy, Chengdu 610059, Sichuan, Peoples R China
关键词
SOLID BITUMEN; ALBANY SHALE; SOURCE ROCKS; OIL-SHALE; BITUMINITE; PETROLOGY; MARINE; GAS; CLASSIFICATION; FLUORESCENCE;
D O I
10.1021/acs.energyfuels.0c04403
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Organic matter in black shales is composed of oil-prone macerals, such as alginite and amorphous organic matter (AOM), and non-oil-prone macerals, induding vitrinite and inertinite. Organic matter composition plays an important role in controlling the hydrocarbon generation potential of black shales. In this study, a total of 17 shales of the Chang 7 Member of Yanchang Formation, Ordos Basin, were selected from 11 drill cores to investigate the petrographic characteristics of organic matter and their influences on the hydrocarbon generation potential of shales. Point-counting analysis indicates that AOM is the dominant organic matter in the Chang 7 Member shales and two types of AOM were observed: sapropelic AOM and humic AOM. Organic matter in shales from the southeast region of the basin is dominated by sapropelic AOM, whereas that from the southwest region is mainly composed of humic AOM. Sapropelic AOM appears to be yellow to orange-brownish color under an optical microscope and has a small size (1-50 mu m), whereas humic AOM is brown to black and has a relatively larger size, ranging from 20 to 200 mu m. Rock-Eval pyrolysis reveals that the studied shales are at the peak oil-window maturity, with vitrinite reflectance (R-o) equivalent ranging from 0.78 to 1.03%. Rock-Eval pyrolysis shows that organic matter in the studied samples is mainly type II kerogen, with some type III kerogen. Kerogen types can also be correlated to AOM content: high sapropelic AOM content is associated with type II kerogen, and high humic AOM content is associated with type III kerogen. S2 shows non-monotonic relationships with AOM content, of which S2 increases slightly with increasing sapropelic AOM content and decreases with increasing humic AOM content. In this study, a hypothetical evolutionary pathway of AOM formation from lacustrine phytoplankton and terrestrial higher plants to amorphous kerogen during early diagenesis was proposed, which has three zones from bottom-water zone to fermentation zone, with each zone having different microbial activities, depending on dissolved oxygen content. Sapropelic and humic AOM are suggested to be microbial degradation products of lacustrine phytoplankton and terrestrial higher plants by anaerobic bacteria in the fermentation zone, respectively. Significant differences in AOM type and content between shales from the southeast and southwest areas were noticed in this study, which could result from differences in organic matter input (phytoplankton vs terrestrial) and deposition environment between these two areas.
引用
收藏
页码:5879 / 5888
页数:10
相关论文
共 50 条
  • [1] Controls of Amorphous Organic Matter on the Hydrocarbon Generation Potential of Lacustrine Shales: A Case Study on the Chang 7 Member of Yanchang Formation, Ordos Basin, North China
    Teng, Juan
    Deng, Hucheng
    Xia, Yu
    Chen, Wenling
    Fu, Meiyan
    [J]. Energy and Fuels, 2021, 35 (07): : 5879 - 5888
  • [2] Maceral Control on the Hydrocarbon Generation Potential of Lacustrine Shales: A Case Study of the Chang 7 Member of the Triassic Yanchang Formation, Ordos Basin, North China
    Liu, Bei
    Teng, Juan
    Mastalerz, Maria
    [J]. ENERGIES, 2023, 16 (02)
  • [3] Controls on Organic Matter Accumulation of the Triassic Yanchang Formation Lacustrine Shales in the Ordos Basin, North China
    Chen, Xiaoliang
    Zhang, Bin
    Huang, Haiping
    Mao, Zhiguo
    [J]. ACS OMEGA, 2021, 6 (40): : 26048 - 26064
  • [4] Controls of organic and inorganic compositions on pore structure of lacustrine shales of Chang 7 member from Triassic Yanchang Formation in the Ordos Basin, China
    Han, Hui
    Pang, Peng
    Li, Zhao-liang
    Shi, Pi-tong
    Guo, Chen
    Liu, Yan
    Chen, Shi-jia
    Lu, Jun-gang
    Gao, Yuan
    [J]. MARINE AND PETROLEUM GEOLOGY, 2019, 100 : 270 - 284
  • [5] The Control of Shale Composition on the Pore Structure Characteristics of Lacustrine Shales: A Case Study of the Chang 7 Member of the Triassic Yanchang Formation, Ordos Basin, North China
    Liu, Bei
    Teng, Juan
    Li, Chen
    Li, Baoqing
    Bie, Shizhen
    Wang, Yinlong
    [J]. ENERGIES, 2022, 15 (22)
  • [6] The Influence of Extractable Organic Matter on Pore Development in the Late Triassic Chang 7 Lacustrine Shales, Yanchang Formation, Ordos Basin, China
    HAN Hui
    LIU Pengwei
    DING Zhengang
    SHI Pitong
    JIA Jianchao
    ZHANG Wei
    LIU Yan
    CHEN Shijia
    LU Jungang
    Chen Kang
    PENG Xudong
    WANG Zhiyong
    XIAO Shuqi
    GAO Yuan
    [J]. Acta Geologica Sinica(English Edition), 2018, 92 (04) : 1508 - 1522
  • [7] The Influence of Extractable Organic Matter on Pore Development in the Late Triassic Chang 7 Lacustrine Shales, Yanchang Formation, Ordos Basin, China
    Han Hui
    Liu Pengwei
    Ding Zhengang
    Shi Pitong
    Jia Jianchao
    Zhang Wei
    Liu Yan
    Chen Shijia
    Lu Jungang
    Chen Kang
    Peng Xudong
    Wang Zhiyong
    Xiao Shuqi
    Gao Yuan
    [J]. ACTA GEOLOGICA SINICA-ENGLISH EDITION, 2018, 92 (04) : 1508 - 1522
  • [8] Reservoir characterization of Chang 7 member shale: A case study of lacustrine shale in the Yanchang Formation, Ordos Basin, China
    Liu, Guoheng
    Huang, Zhilong
    Chen, Feiran
    Jiang, Zhenxue
    Gao, Xiaoyu
    Li, Tingwei
    Chen, Lei
    Xia, Lu
    Han, Wei
    [J]. JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 34 : 458 - 471
  • [9] Micro fractures and pores in lacustrine shales of the Upper Triassic Yanchang Chang7 Member, Ordos Basin, China
    Zhang, Wenzheng
    Xie, Liqin
    Yang, Weiwei
    Qin, Yan
    Peng, Ping'an
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2017, 156 : 194 - 201
  • [10] The formation and evolutionary characteristics of organic matter and pyrites in the continental shales of the 3rd submember of Chang 7 Member, Yanchang formation, Ordos Basin, China
    Bian, Ruikang
    [J]. ENERGY GEOSCIENCE, 2024, 5 (02):