HEp-2 Cell Classification in IIF Images Using ShareBoost

被引:0
|
作者
Ersoy, I. [1 ]
Bunyak, F. [1 ]
Peng, J. [2 ]
Palaniappan, K. [1 ]
机构
[1] Univ Missouri, Dept Comp Sci, Columbia, MO 65211 USA
[2] Montclair State Univ, Dept Comp Sci, Montclair, NJ 07043 USA
关键词
PATTERNS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Indirect immunofluorescence (IIF) imaging is a method used for detection of antinuclear auto-antibodies (ANA) for the diagnosis of autoimmune diseases. We present a feature extraction and classification scheme to classify the fluorescence staining patterns of HEp-2 cells in IIF images. We propose a set of complementary features that are sensitive to staining pattern variations among classes. Our feature set utilizes local shape measures via Hessian matrix, gradient features using our adaptive robust structure tensors and texture features. We apply our multi-view ShareBoost algorithm to this set using each feature descriptor as a separate view. ShareBoost utilizes a single re-sampling distribution for all views that helps the classifier to exploit the interplay between subspaces and is robust to noisy labels. Our experimental results show an average of over 90 percent accuracy in classification of six HEp-2 cell types.
引用
收藏
页码:3362 / 3365
页数:4
相关论文
共 50 条
  • [1] A BENCHMARKING PLATFORM FOR MITOTIC CELL CLASSIFICATION OF ANA IIF HEP-2 IMAGES
    Miros, Anastasia
    Wiliem, Arnold
    Holohan, Kim
    Ball, Lauren
    Hobson, Peter
    Lovell, Brian C.
    2015 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2015, : 9 - 14
  • [2] Computationally-efficient classification of HEp-2 cell patterns in IIF images
    Planella Gonzalez, Luis Fernando
    Alcoba Ruiz, Duncan Dubugras
    Pinho, Marcio Sarroglia
    30TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, VOLS I AND II, 2015, : 825 - 830
  • [3] Applying Textural Features to the Classification of HEp-2 Cell Patterns in IIF images
    Di Cataldo, Santa
    Bottino, Andrea
    Ficarra, Elisa
    Macii, Enrico
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 3349 - 3352
  • [4] CanSuR: a robust method for staining pattern recognition of HEp-2 cell IIF images
    Mandal, Ankita
    Maji, Pradipta
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (21): : 16471 - 16489
  • [5] CanSuR: a robust method for staining pattern recognition of HEp-2 cell IIF images
    Ankita Mandal
    Pradipta Maji
    Neural Computing and Applications, 2020, 32 : 16471 - 16489
  • [6] Analyzing features by SWLDA for the classification of HEp-2 cell images using GMM
    Sarrafzadeh, Omid
    Rabbani, Hossein
    Dehnavi, Alireza Mehri
    Talebi, Ardeshir
    PATTERN RECOGNITION LETTERS, 2016, 82 : 44 - 55
  • [7] A Dynamic Learning Method for the Classification of the HEp-2 Cell Images
    Vununu, Caleb
    Lee, Suk-Hwan
    Kwon, Oh-Jun
    Kwon, Ki-Ryong
    ELECTRONICS, 2019, 8 (08)
  • [8] HIERARCHICAL CLASSIFICATION OF HEP-2 CELL IMAGES USING CLASS-SPECIFIC FEATURES
    Gupta, Vibha
    Gupta, Krati
    Bhavsar, Arnav
    Sao, Anil K.
    PROCEEDINGS OF THE 2016 6TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP), 2016,
  • [9] HEp-2 cell classification using artificial neural networkapproach
    Divya, B. S.
    Subramaniam, Kamalraj
    Nanjundaswamy, H. R.
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 84 - 89
  • [10] HEp-2 Cell Classification Using Multilevel Wavelet Decomposition
    Katyal, Ranveer
    Kuse, Manohar
    Dash, Subrat Kumar
    2014 IEEE REGION 10 SYMPOSIUM, 2014, : 147 - 150