Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos

被引:103
|
作者
Witteveen, Jeroen A. S. [1 ]
Sarkar, Sunetra [1 ]
Bijl, Hester [1 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn, NL-2629 HS Delft, Netherlands
关键词
dynamic stall; stall flutter; structural nonlinearity; uncertainty quantification; polynomial chaos expansion; arbitrary uncertainties;
D O I
10.1016/j.compstruc.2007.01.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A nonlinear dynamic problem of stall induced flutter oscillation subject to physical uncertainties is analyzed using arbitrary polynomial chaos. A single-degree-of-freedom stall flutter model with torsional oscillation is considered subject to nonlinear aerodynamic loads in the dynamic stall regime and nonlinear structural stiffness. The analysis of the deterministic aeroelastic response demonstrated that the problem is sensitive to variations in structural natural frequency and structural nonlinearity. The effect of uncertainties in these parameters is studied. Arbitrary polynomial chaos is employed in which appropriate expansion polynomials are constructed based on the statistical moments of the uncertain input. The arbitrary polynomial chaos results are compared with Monte Carlo simulations. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:866 / 878
页数:13
相关论文
共 50 条
  • [1] Fluid-Structure Interaction Simulations of Wind Turbine Blades with Pointed Tips
    Huque, Ziaul
    Zemmouri, Fadoua
    Lu, Haidong
    Kommalapati, Raghava Rao
    [J]. ENERGIES, 2024, 17 (05)
  • [2] Numerical Fluid-Structure Interaction Analysis of a Wells Turbine With Flexible Blades
    Kincaid, Kellis C.
    MacPhee, David W.
    [J]. JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2020, 142 (08):
  • [3] Fluid-structure interaction of flexible submerged vegetation stems and kinetic turbine blades
    Wang, Mingyang
    Avital, Eldad J.
    Bai, Xin
    Ji, Chunning
    Xu, Dong
    Williams, John J. R.
    Munjiza, Antonio
    [J]. COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (05) : 839 - 848
  • [4] Fluid-structure interaction of FRP wind turbine blades under aerodynamic effect
    Lee, Ya-Jung
    Jhan, Yu-Ti
    Chung, Cheng-Hsien
    [J]. COMPOSITES PART B-ENGINEERING, 2012, 43 (05) : 2180 - 2191
  • [5] A New Computational Model for Fluid-Structure Interaction Phenomena in Wind-Turbine Blades
    Ponta, F. L.
    Otero, A. D.
    Lago, L. I.
    [J]. CLEAN TECHNOLOGY 2008: BIO ENERGY, RENEWABLES, GREEN BUILDING, SMART GRID, STORAGE, AND WATER, 2008, : 160 - 163
  • [6] Deep learning enhanced fluid-structure interaction analysis for composite tidal turbine blades
    Xu, Jian
    Wang, Longyan
    Luo, Zhaohui
    Wang, Zilu
    Zhang, Bowen
    Yuan, Jianping
    Tan, Andy C. C.
    [J]. ENERGY, 2024, 296
  • [7] Dynamic analysis of a Francis turbine based on the fluid-structure interaction theorem
    Zhang, Lixia
    Zhang, Wei
    Pan, Jiluan
    [J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2008, 48 (05): : 773 - 776
  • [8] Fluid-Structure Interaction Modeling for Fatigue-Damage Prediction in Full-Scale Wind-Turbine Blades
    Bazilevs, Y.
    Korobenko, A.
    Deng, X.
    Yan, J.
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2016, 83 (06):
  • [9] THE EFFECT OF GRAVITY IN TRANSIENT FLUID-STRUCTURE INTERACTION SIMULATIONS OF A LARGE WIND TURBINE WITH COMPOSITE BLADES
    Santo, G.
    Peeters, M.
    Van Paepegem, W.
    Degroote, J.
    [J]. VII INTERNATIONAL CONFERENCE ON TEXTILE COMPOSITES AND INFLATABLE STRUCTURES (STRUCTURAL MEMBRANES 2017), 2017, : 403 - 414
  • [10] Fluid-Structure Interaction Analysis of a Fabric Skin for Fabric-Covered Wind Turbine Blades
    Choi, Dong-Kuk
    An, Hyung-Ju
    Lee, Soo-Yong
    Bae, Jae-Sung
    [J]. INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2022, 23 (01) : 92 - 101