Predicting transport effects of scintillation light signals in large-scale liquid argon detectors

被引:3
|
作者
Garcia-Gamez, Diego [1 ,2 ]
Green, Patrick [3 ]
Szelc, Andrzej M. [3 ,4 ]
机构
[1] Univ Granada, Campus Fuentenueva, Granada 18002, Spain
[2] CAFPE, Campus Fuentenueva, Granada 18002, Spain
[3] Univ Manchester, Dept Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England
[4] Univ Edinburgh, Sch Phys & Astron, Peter Guthrie Tait Rd, Edinburgh, Midlothian, Scotland
来源
EUROPEAN PHYSICAL JOURNAL C | 2021年 / 81卷 / 04期
基金
英国科学技术设施理事会;
关键词
DARK-MATTER; XENON; LUMINESCENCE; EMISSION; SEARCH; LENGTH; YIELDS;
D O I
10.1140/epjc/s10052-021-09119-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Liquid argon is being employed as a detector medium in neutrino physics and Dark Matter searches. A recent push to expand the applications of scintillation light in Liquid Argon Time Projection Chamber neutrino detectors has necessitated the development of advanced methods of simulating this light. The presently available methods tend to be prohibitively slow or imprecise due to the combination of detector size and the amount of energy deposited by neutrino beam interactions. In this work we present a semi-analytical model to predict the quantity of argon scintillation light observed by a light detector with a precision better than 10%, based only on the relative positions between the scintillation and light detector. We also provide a method to predict the distribution of arrival times of these photons accounting for propagation effects. Additionally, we present an equivalent model to predict the number of photons and their arrival times in the case of a wavelength-shifting, highly-reflective layer being present on the detector cathode. Our proposed method can be used to simulate light propagation in large-scale liquid argon detectors such as DUNE or SBND, and could also be applied to other detector mediums such as liquid xenon or xenon-doped liquid argon.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Predicting transport effects of scintillation light signals in large-scale liquid argon detectors
    Diego Garcia-Gamez
    Patrick Green
    Andrzej M. Szelc
    The European Physical Journal C, 2021, 81
  • [2] Large-scale liquid scintillation detectors for solar neutrinos
    Benziger, Jay B.
    Calaprice, Frank P.
    EUROPEAN PHYSICAL JOURNAL A, 2016, 52 (04):
  • [3] Large-scale liquid scintillation detectors for solar neutrinos
    Jay B. Benziger
    Frank P. Calaprice
    The European Physical Journal A, 2016, 52
  • [4] Spectral photon sorting for large-scale Cherenkov and scintillation detectors
    Kaptanoglu, Tanner
    Luo, Meng
    Land, Benjamin
    Bacon, Amanda
    Klein, Joshua R.
    PHYSICAL REVIEW D, 2020, 101 (07)
  • [5] LARGE LIQUID SCINTILLATION DETECTORS
    COWAN, CL
    REINES, F
    HARRISON, FB
    ANDERSON, EC
    HAYES, FN
    PHYSICAL REVIEW, 1953, 90 (03): : 493 - 494
  • [6] A novel use of light guides and wavelength shifting plates for the detection of scintillation photons in large liquid argon detectors
    Howard, B.
    Mufson, S.
    Whittington, D.
    Adams, B.
    Baugh, B.
    Jordan, J. R.
    Karty, J.
    Macias, C. T.
    Pla-Dalmau, A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 907 : 9 - 21
  • [7] Propagation of scintillation light in Liquid Argon
    Babicz, M.
    Bordoni, S.
    Cervi, T.
    Collins, Z.
    Fava, A.
    Ferrari, A.
    Kose, U.
    Meli, M.
    Menegolli, A.
    Nessi, M.
    Pietropaolo, F.
    Raselli, G. L.
    Resnati, F.
    Rossella, M.
    Sala, P.
    Zani, A.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (03):
  • [8] The effects of dissolved methane upon liquid argon scintillation light
    Jones, B. J. P.
    Alexander, T.
    Back, H. O.
    Collin, G.
    Conrad, J. M.
    Greene, A.
    Katori, T.
    Pordes, S.
    Toups, M.
    JOURNAL OF INSTRUMENTATION, 2013, 8
  • [9] Large-scale, precision xenon doping of liquid argon
    McFadden, N.
    Elliott, S. R.
    Gold, M.
    Fields, D. E.
    Rielage, K.
    Massarczyk, R.
    Gibbons, R.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2021, 1011
  • [10] Simulation of large-scale fast neutron liquid scintillation detector
    幸浩洋
    王力
    朱敬军
    唐昌建
    岳骞
    Chinese Physics C, 2013, 37 (02) : 53 - 60