Modeling and predicting sunspot activity - state space reconstruction plus artificial neural network methods

被引:8
|
作者
Kulkarni, DR [1 ]
Pandya, AS [1 ]
Parikh, JC [1 ]
机构
[1] Phys Res Lab, Ahmedabad 380009, Gujarat, India
关键词
D O I
10.1029/98GL00136
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Ideas of state space reconstruction of dynamics are combined with nonparametric artificial neural network approach to model sunspot activity. The structural aspects of the model are for the most part determined from the sunspot data. The model gives a very good fit to the data. Further it predicts weaker solar activity in the current (23-rd) cycle, with a maximum of 144 +/- 36.
引用
收藏
页码:457 / 460
页数:4
相关论文
共 50 条
  • [1] Predicting the Functional Dependence of the Sunspot Number in the Solar Activity Cycle Based on Elman Artificial Neural Network
    Krasheninnikov, I. V.
    Chumakov, S. O.
    [J]. GEOMAGNETISM AND AERONOMY, 2023, 63 (02) : 215 - 223
  • [2] Predicting the Functional Dependence of the Sunspot Number in the Solar Activity Cycle Based on Elman Artificial Neural Network
    I. V. Krasheninnikov
    S. O. Chumakov
    [J]. Geomagnetism and Aeronomy, 2023, 63 : 215 - 223
  • [3] Artificial neural network modeling for predicting melt blowing processing
    Chen, T
    Wang, J
    Huang, XB
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 99 (01) : 424 - 429
  • [4] Sunspot Forecast Using Temporal Convolutional Neural (TCN) Network Based on Phase Space Reconstruction
    Dai, Sicheng
    Liu, Yiru
    Meng, Jun
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2895 - 2900
  • [5] Artificial neural network modeling for predicting the growth of the microalga Karlodinium veneficum
    Garcia-Camacho, F.
    Lopez-Rosales, L.
    Sanchez-Miron, A.
    Belarbi, E. H.
    Chisti, Yusuf
    Molina-Grima, E.
    [J]. ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2016, 14 : 58 - 64
  • [6] Artificial neural network modeling for predicting melt-blowing processing
    Chen, Ting
    Wang, Jun
    Huang, Xiubao
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 101 (06) : 4275 - 4280
  • [7] Predicting the pilling propensity of fabrics through artificial neural network modeling
    Beltran, R
    Wang, LJ
    Wang, XG
    [J]. TEXTILE RESEARCH JOURNAL, 2005, 75 (07) : 557 - 561
  • [8] Predicting cost deviation in reconstruction projects: Artificial neural network versus regression
    Attalla, M
    Hegazy, T
    [J]. JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT-ASCE, 2003, 129 (04): : 405 - 411
  • [9] Modeling the activity of furin inhibitors using artificial neural network
    Worachartcheewan, Apilak
    Nantasenamat, Chanin
    Naenna, Thanakorn
    Isarankura-Na-Ayudhya, Chartchalerm
    Prachayasittikul, Virapong
    [J]. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2009, 44 (04) : 1664 - 1673
  • [10] Predicting spikes with artificial neural network
    Lihong Cao
    Jiamin Shen
    Lei Wang
    Ye Wang
    [J]. Science China Information Sciences, 2018, 61