The major objectives of the present work were focused on assessing the antioxidant capacities of two hydroxyl-substituent Schiff bases, 2-((o-hydroxylphenylimino)methyl)phenol (OSAP) and 2-(p-hydroxylphenylimino)methyl)phenol (PSAP) either used alone or in combination with some familiar water-soluble antioxidants i.e. 6-hydroxyl-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) and L-ascorbic acid (VC), and lipophilic ones i.e. alpha-tocopherol (TOH) and L-ascorbyl-6-laurate (VC-12). 2,2'-Azobis-(2-amidinopropane hydrochloride) (AAPH). Induced hemolysis of human erythrocytes functioned as the evaluation experimental system in this research. The present findings showed that either OSAP or PSAP not only was an antioxidant with high activity in protecting erythrocytes against AAPH-induced hemolysis concentration-dependently, but can also protect erythrocytes by acting with Trolox, TOH, VC and VC-12 synergistically. Based on chemical kinetic deduction, the number of trapping peroxyl radicals, n, of the above-mentioned antioxidants can be calculated in relation to Trolox that traps two peroxyl radicals; thus, TOH can trap 3.83 peroxyl radicals, VC-12 traps 2.87 and VC can only trap 1.08. As for OSAP and PSAP, 8.71 and 13.7 peroxyl radicals can be trapped, respectively, indicating that they were the most efficient inhibitors against AAPH-induced hemolysis. Moreover, the total number of peroxyl radicals trapped by OSAP+Trolox, OSAP+TOH, OSAP+VC and PSAP+VC were higher than the sum of the above individual antioxidant used alone, demonstrating that a mutual promotive effect existed in the above mixed antioxidants. In contrast, owing to the fact that the total number of peroxyl radicals trapped by OSAP+VC-12, PSAP+Trolox, PSAP+TOH and PSAP+VC-12 were less than the sum of the above individual antioxidant used alone, a mutual antagonistic effect was suggested in these combinative usages. This information may be helpful in the pharmaceutical application of two Schiff bases. Copyright (c) 2005 John Wiley & Sons, Ltd.