Formula for fixed point resolution matrix of permutation orbifolds

被引:3
|
作者
Maio, M. [1 ]
Schellekens, A. N. [1 ,2 ,3 ]
机构
[1] Nikhef Theory Grp, Amsterdam, Netherlands
[2] Radboud Univ Nijmegen, IMAPP, Nijmegen, Netherlands
[3] CSIC, Inst Fis Fundamental, Madrid, Spain
关键词
Conformal field theory; String theory; Permutation orbifolds; CONFORMAL FIELD-THEORY; SIMPLE CURRENT EXTENSIONS; SIMPLE CURRENTS; MODULAR INVARIANTS; FUSION RULES; WZW MODELS; SYMMETRY;
D O I
10.1016/j.nuclphysb.2009.12.022
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We find a formula for the resolution of fixed points in extensions of permutation orbifold conformal field theories by its (half-)integer spin simple currents. We show that the formula gives a Unitary and modular invariant S matrix. (C) 2009 Elsevier B.V.. All rights reserved,
引用
收藏
页码:116 / 152
页数:37
相关论文
共 50 条
  • [1] Fixed point resolution in extensions of permutation orbifolds
    Maio, M.
    Schellekens, A. N.
    NUCLEAR PHYSICS B, 2009, 821 (03) : 577 - 606
  • [2] S-matrix in permutation orbifolds
    Dong, Chongying
    Xu, Feng
    Yu, Nina
    JOURNAL OF ALGEBRA, 2022, 606 : 851 - 876
  • [3] LOCALIZED INDEX AND L2-LEFSCHETZ FIXED-POINT FORMULA FOR ORBIFOLDS
    Wang, Bai-Ling
    Wang, Hang
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2016, 102 (02) : 285 - 349
  • [4] Permutation orbifolds
    Bantay, P
    NUCLEAR PHYSICS B, 2002, 633 (03) : 365 - 378
  • [5] On the fixed point formula
    Lefschetz, S
    ANNALS OF MATHEMATICS, 1937, 38 : 819 - 822
  • [6] Permutation orbifolds and chaos
    Belin, Alexandre
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11):
  • [7] Permutation orbifolds and holography
    Haehl, Felix M.
    Rangamani, Mukund
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (03):
  • [8] Permutation orbifolds and holography
    Felix M. Haehl
    Mukund Rangamani
    Journal of High Energy Physics, 2015
  • [9] Permutation orbifolds and chaos
    Alexandre Belin
    Journal of High Energy Physics, 2017
  • [10] The spectrum of permutation orbifolds
    Keller, Christoph A.
    Muhlmann, Beatrix J.
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (07) : 1559 - 1572