Duration prediction of Chilean strong motion data using machine learning

被引:11
|
作者
Chanda, Sarit [1 ]
Raghucharan, M. C. [1 ]
Reddy, K. S. K. Karthik [1 ]
Chaudhari, Vasudeo [1 ]
Somala, Surendra Nadh [1 ]
机构
[1] Indian Inst Technol Hyderabad, Hyderabad, India
关键词
Duration; Significant-duration; Inslab; Classifiers; Machine learning algorithms; STRONG GROUND MOTION;
D O I
10.1016/j.jsames.2021.103253
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Chile is rocked by inslab, interface as well as crustal events. Duration estimates based on Chilean strong motion flatfile is used to predict total duration as well as significant-duration. We use six different machine learning algorithms k-nearest neighbours, support vector machine, Random forest, Neural network, AdaBoost, decision tree and estimate the accuracies of prediction for each component (EW, NS, Z) of ground motion for different tectonic environments. The estimates of duration using machine learning are found to be quite accurate and the best performing machine learning algorithm in prediction of the total duration and the significant-duration are highlighted.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Strong-motion Earthquake Prediction Model using Convolutional Extreme Learning Machine
    Chomchit, Phiphat
    Champrasert, Paskorn
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 756 - 759
  • [2] Ground-Motion Models for the Prediction of Significant Duration Using Strong-Motion Data from Iran
    Meimandi-Parizi, Ali
    Daryoushi, Masoud
    Mahdavian, Abbas
    Saffari, Hamid
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2020, 110 (01) : 319 - 330
  • [3] Ground motion prediction maps using seismic-microzonation data and machine learning
    Mori, Federico
    Mendicelli, Amerigo
    Falcone, Gaetano
    Acunzo, Gianluca
    Spacagna, Rose Line
    Naso, Giuseppe
    Moscatelli, Massimiliano
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2022, 22 (03) : 947 - 966
  • [4] Microgrid Data Prediction Using Machine Learning
    Lautert, Renata Rodrigues
    Cambambi, Claudio Adriano C.
    Rangel, Camilo Alberto S.
    Canha, Luciane Neves
    de Freitas, Adriano Gomes
    Brignol, Wagner da Silva
    2023 15TH SEMINAR ON POWER ELECTRONICS AND CONTROL, SEPOC, 2023,
  • [5] Prediction Model for Significant Duration of Strong Motion in India
    Bhargav, N. C.
    Challagulla, S. P.
    Farsangi, Ehsan Noroozinejad
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2022, 26 (02): : 279 - 292
  • [6] Automatic Accident Detection, Segmentation and Duration Prediction Using Machine Learning
    Grigorev, Artur
    Mihaita, Adriana-Simona
    Saleh, Khaled
    Chen, Fang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (02) : 1547 - 1568
  • [7] Machine learning in ground motion prediction
    Khosravikia, Farid
    Clayton, Patricia
    COMPUTERS & GEOSCIENCES, 2021, 148
  • [8] Motion Prediction Using Extreme Learning Machine in Image Guided Radiotherapy
    Jia, J.
    Cao, R.
    Pei, X.
    Wang, H.
    Hu, L.
    MEDICAL PHYSICS, 2015, 42 (06) : 3309 - 3309
  • [9] Significant duration prediction of seismic ground motions using machine learning algorithms
    Li, Xinle
    Gao, Pei
    PLOS ONE, 2024, 19 (02):
  • [10] Prediction of Human Health using Machine Learning and Big Data
    Fahad, P. K.
    Pallavi, M. S.
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2018, : 195 - 199