Identification of Individualized Feature Combinations for Survival Prediction in Breast Cancer: A Comparison of Machine Learning Techniques

被引:0
|
作者
Vanneschi, Leonardo [1 ]
Farinaccio, Antonella [1 ]
Giacobini, Mario [2 ,3 ]
Mauri, Giancarlo [1 ]
Antoniotti, Marco [1 ]
Provero, Paolo [2 ,4 ]
机构
[1] Univ Milano Bicocca, Dept Informat Syst & Commun DISCo, Milan, Italy
[2] Univ Turin, Mol Biotechnol Ctr, Comp Biol Unit, I-10124 Turin, Italy
[3] Univ Turin, Fac Vet Med, Dept Anim Prod, Epidemiol & Ecol, I-10124 Turin, Italy
[4] Univ Turin, Dept Genet, Biol & Biochem, I-10124 Turin, Italy
关键词
GENE SELECTION; CLASSIFICATION; DISCOVERY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ability to accurately classify cancer patients into risk classes, i.e. to predict the outcome of the pathology on an individual basis, is a key ingredient in making therapeutic decisions. In recent years gene expression data have been successfully used to complement the clinical and histological criteria traditionally used in such prediction. Many "gene expression signatures" have been developed, i.e. sets of genes whose expression values in a tumor can be used to predict the outcome of the pathology. Here we investigate the use of several machine learning techniques to classify breast cancer patients using one of such signatures, the well established 70-gene signature. We show that Genetic Programming performs significantly better than Support Vector Machines, Multilayered Perceptron and Random Forest in classifying patients from the NKI breast cancer dataset, and slightly better than the scoring-based method originally proposed by the authors of the seventy-gene signature. Furthermore, Genetic Programming is able to perform an automatic feature selection. Since the performance of Genetic Programming, is likely to be improvable compared to the out-of-the-box approach used here, and given the biological insight potentially provided by the Genetic Programming solutions, we conclude that Genetic Programming methods are worth further investigation as a tool for cancer patient classification based on gene expression data.
引用
收藏
页码:110 / +
页数:3
相关论文
共 50 条
  • [1] A comparison of machine learning techniques for survival prediction in breast cancer
    Leonardo Vanneschi
    Antonella Farinaccio
    Giancarlo Mauri
    Marco Antoniotti
    Paolo Provero
    Mario Giacobini
    BioData Mining, 4
  • [2] A comparison of machine learning techniques for survival prediction in breast cancer
    Vanneschi, Leonardo
    Farinaccio, Antonella
    Mauri, Giancarlo
    Antoniotti, Mauro
    Provero, Paolo
    Giacobini, Mario
    BIODATA MINING, 2011, 4
  • [3] Machine Learning Techniques for Survival Time Prediction in Breast Cancer
    Mihaylov, Iliyan
    Nisheva, Maria
    Vassilev, Dimitar
    ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS, AND APPLICATIONS, AIMSA 2018, 2018, 11089 : 186 - 194
  • [4] Machine Learning Techniques and Breast Cancer Prediction: A Review
    Gagandeep Kaur
    Ruchika Gupta
    Nistha Hooda
    Nidhi Rani Gupta
    Wireless Personal Communications, 2022, 125 : 2537 - 2564
  • [5] Machine Learning Techniques and Breast Cancer Prediction: A Review
    Kaur, Gagandeep
    Gupta, Ruchika
    Hooda, Nistha
    Gupta, Nidhi Rani
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 125 (03) : 2537 - 2564
  • [6] Machine learning models in breast cancer survival prediction
    Montazeri, Mitra
    Montazeri, Mohadeseh
    Montazeri, Mahdieh
    Beigzadeh, Amin
    TECHNOLOGY AND HEALTH CARE, 2016, 24 (01) : 31 - 42
  • [7] Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer
    Alabi, Rasheed Omobolaji
    Makitie, Antti A.
    Pirinen, Matti
    Elmusrati, Mohammed
    Leivo, Ilmo
    Almangush, Alhadi
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2021, 145
  • [8] A Comparison of Machine Learning Methods for the Prediction of Breast Cancer
    Silva, Sara
    Anunciacao, Orlando
    Lotz, Marco
    EVOLUTIONARY COMPUTATION, MACHINE LEARNING AND DATA MINING IN BIOINFORMATICS, 2011, 6623 : 159 - +
  • [9] Breast cancer prediction using supervised machine learning techniques
    Dadheech, Pankaj
    Kalmani, Vijay
    Dogiwal, Sanwta Ram
    Sharma, Vijay Kumar
    Kumar, Ankit
    Pandey, Saroj Kumar
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2023, 44 (03): : 383 - 392
  • [10] Breast Cancer Subtype Identification Using Machine Learning Techniques
    Firoozbakht, Forough
    Rezaeian, Iman
    Porter, Lisa
    Rueda, Luis
    2014 IEEE 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2014,