Constant costate iterations for finite-horizon optimal control with nonlinear dynamics

被引:1
|
作者
Tarantino, Lorenzo [1 ]
Sassano, Mario [1 ]
Galeani, Sergio [1 ]
Astolfi, Alessandro [1 ,2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat DICII, Via Politecn 1, I-00133 Rome, Italy
[2] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
关键词
NUMERICAL-METHODS; FEEDBACK-CONTROL;
D O I
10.1109/CDC51059.2022.9992700
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A class of nonlinear finite-horizon optimal control problems is studied. We propose a solution based on an iterative strategy that relies on the linearization of the nonlinear dynamics and on the construction of the corresponding time-varying Hamiltonian dynamics. Differently from existing methods that hinge upon similar tools, the proposed strategy hinges upon the solution to a linear initial value problem and does not require at each step the (numerical) solution of a two-point boundary value problem or of a time-varying Riccati equation. The result is achieved by exploiting a time-varying change of coordinates with the objective of obtaining a constant optimal costate in the transformed coordinates.
引用
收藏
页码:3481 / 3486
页数:6
相关论文
共 50 条
  • [1] Finite-Horizon Optimal Control for Linear and Nonlinear Systems Relying on Constant Optimal Costate
    Tarantino, Lorenzo
    Sassano, Mario
    Galeani, Sergio
    Astolfi, Alessandro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (04) : 2174 - 2188
  • [2] A Fixed-Point Characterization of the Optimal Costate in Finite-Horizon Optimal Control Problems
    Sassano, Mario
    Astolfi, Alessandro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (08) : 3562 - 3574
  • [3] Finite-Horizon Neural Optimal Tracking Control for a Class of Nonlinear Systems with Unknown Dynamics
    Wang, Ding
    Liu, Derong
    Li, Hongliang
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 138 - 143
  • [4] Improved Genetic Algorithm for Finite-Horizon Optimal Control of Nonlinear Systems
    Khamis, Ahmed
    Zydek, Dawid
    Selvaraj, Henry
    2017 25TH INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING (ICSENG), 2017, : 85 - 90
  • [5] Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method
    Garg, Divya
    Patterson, Michael A.
    Francolin, Camila
    Darby, Christopher L.
    Huntington, Geoffrey T.
    Hager, William W.
    Rao, Anil V.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 49 (02) : 335 - 358
  • [6] Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method
    Divya Garg
    Michael A. Patterson
    Camila Francolin
    Christopher L. Darby
    Geoffrey T. Huntington
    William W. Hager
    Anil V. Rao
    Computational Optimization and Applications, 2011, 49 : 335 - 358
  • [7] Finite-horizon optimal control of Boolean control networks
    Fornasini, Ettore
    Valcher, Maria Elena
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 3864 - 3869
  • [8] Finite-horizon inverse optimal control for discrete-time nonlinear systems
    Molloy, Timothy L.
    Ford, Jason J.
    Perez, Tristan
    AUTOMATICA, 2018, 87 : 442 - 446
  • [9] Finite-horizon optimal control of unknown nonlinear time-delay systems
    Cui, Xiaohong
    Zhang, Huaguang
    Luo, Yanhong
    Jiang, He
    NEUROCOMPUTING, 2017, 238 : 277 - 285
  • [10] Algebraic Approach to Nonlinear Finite-Horizon Optimal Control Problems with Terminal Constraints
    Iori, Tomoyuki
    Kawano, Yu
    Ohtsuka, Toshiyuki
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 1 - 6