Realizations of the Witt and Virasoro Algebras and Integrable Equations

被引:6
|
作者
Huang, Qing [1 ]
Zhdanov, Renat [2 ]
机构
[1] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710127, Shaanxi, Peoples R China
[2] CyberOpt Corp, 5900 Golden Hills Dr, Minneapolis, MN 55416 USA
基金
中国国家自然科学基金;
关键词
Witt algebra; Virasoro algebra; Lie vector field; equivalence transformation; integrable equation; KADOMTSEV-PETVIASHVILI EQUATION; LIE-ALGEBRAS; GROUP CLASSIFICATION; SYMMETRY; OPERATORS; MODULES; SYSTEMS;
D O I
10.1080/14029251.2020.1683964
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study realizations of infinite-dimensional Witt and Virasoro algebras. We obtain a complete description of realizations of the Witt algebra by Lie vector fields of first-order differential operators over the space ?(3). We prove that none of them admits non-trivial central extension, which means that there are no realizations of the Virasoro algebra in ?(3). We describe all inequivalent realizations of the direct sum of the Witt algebras by Lie vector fields over ?(3). This result enables complete description of all possible (1+1)- dimensional partial differential equations that admit infinite dimensional symmetry algebras isomorphic to the direct sum of Witt algebras. In this way we have constructed a number of new classes of nonlinear partial differential equations admitting infinite-dimensional Witt algebras. So new integrable models which admit infinite symmetry algebra are obtained.
引用
收藏
页码:36 / 56
页数:21
相关论文
共 50 条
  • [1] Realizations of the Witt and Virasoro Algebras and Integrable Equations
    Qing Huang
    Renat Zhdanov
    Journal of Nonlinear Mathematical Physics, 2020, 27 : 36 - 56
  • [2] WITT AND VIRASORO ALGEBRAS AS LIE BIALGEBRAS
    TAFT, EJ
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 87 (03) : 301 - 312
  • [3] Generalized Witt, Witt n-algebras, Virasoro algebras and KdV equations induced from R(p, q)-deformed quantum algebras
    Hounkonnou, Mahouton Norbert
    Melong, Fridolin
    Mitrovic, Melanija
    REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (04)
  • [4] Extending Representations of sl(2) to Witt and Virasoro Algebras
    Plaza Martin, Francisco J.
    Tejero Prieto, Carlos
    ALGEBRAS AND REPRESENTATION THEORY, 2017, 20 (02) : 433 - 468
  • [5] Classification of the Lie bialgebra structures on the Witt and Virasoro algebras
    Ng, SH
    Taft, EJ
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 151 (01) : 67 - 88
  • [6] Rota-Baxter operators on Witt and Virasoro algebras
    Gao, Xu
    Liu, Ming
    Bai, Chengming
    Jing, Naihuan
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 108 : 1 - 20
  • [7] The groups of automorphisms of the Witt Wn and Virasoro Lie algebras
    Vladimir V. Bavula
    Czechoslovak Mathematical Journal, 2016, 66 : 1129 - 1141
  • [8] Brackets with (τ, σ)-derivations and (p, q)-deformations of Witt and Virasoro algebras
    Elchinger, Olivier
    Lundengard, Karl
    Makhlouf, Abdenacer
    Silvestrov, Sergei D.
    FORUM MATHEMATICUM, 2016, 28 (04) : 657 - 673
  • [9] The groups of automorphisms of the Witt W n and Virasoro Lie algebras
    Bavula, Vladimir V.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (04) : 1129 - 1141
  • [10] Integrable modules for loop affine-Virasoro algebras
    Rao, S. Eswara
    Sharma, Sachin S.
    Mukherjee, Sudipta
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (12) : 5500 - 5512