Anisotropic L2-estimates of weak solutions to the stationary Oseen-type equations in 3D-exterior domain for a rotating body

被引:10
|
作者
Kracmar, Stanislav [1 ]
Necasova, Sarka [2 ]
Penel, Patrick [3 ,4 ]
机构
[1] Czech Tech Univ, Dept Tech Math, Prague 12135 2, Czech Republic
[2] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[3] Univ Sud Toulon Var, Dept Math, F-83957 La Garde, France
[4] Univ Sud Toulon Var, Lab Syst Navals Complexes, F-83957 La Garde, France
关键词
Oseen problem; rotating body; anisotropically weighted L-2 spaces; NAVIER-STOKES FLOW; EXTERIOR; OPERATOR;
D O I
10.2969/jmsj/06210239
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Oseen problem with rotational effect in exterior three-dimensional domains. Using a variational approach we prove existence and uniqueness theorems in anisotropically weighted Sobolev spaces in the whole three-dimensional space. As the main tool we derive and apply an inequality of the Friedrichs-Poincare type and the theory of Calderon-Zygmund kernels in weighted spaces. For the extension of results to the case of exterior domains we use a localization procedure.
引用
收藏
页码:239 / 268
页数:30
相关论文
共 16 条