Robust Ensemble Classifier Combination Based on Noise Removal with One-Class SVM

被引:3
|
作者
Catak, Ferhat Ozgur [1 ]
机构
[1] TUBITAK BILGEM, Cyber Secur Inst, Kocaeli Gebze, Turkey
来源
关键词
One-class SVM; Data partitioning; Noise filtering; Gini impurity; Large scale data classification;
D O I
10.1007/978-3-319-26535-3_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In machine learning area, as the number of labeled input samples becomes very large, it is very difficult to build a classification model because of input data set is not fit in a memory in training phase of the algorithm, therefore, it is necessary to utilize data partitioning to handle overall data set. Bagging and boosting based data partitioning methods have been broadly used in data mining and pattern recognition area. Both of these methods have shown a great possibility for improving classification model performance. This study is concerned with the analysis of data set partitioning with noise removal and its impact on the performance of multiple classifier models. In this study, we propose noise filtering preprocessing at each data set partition to increment classifier model performance. We applied Gini impurity approach to find the best split percentage of noise filter ratio. The filtered sub data set is then used to train individual ensemble models.
引用
收藏
页码:10 / 17
页数:8
相关论文
共 50 条
  • [1] K - Means Based One-Class SVM Classifier
    Abedalla, Loai
    Badarna, Murad
    Khalifa, Waleed
    Yousef, Malik
    DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA 2019), 2019, 1062 : 45 - 53
  • [2] Employing One-Class SVM Classifier Ensemble for Imbalanced Data Stream Classification
    Klikowski, Jakub
    Wozniak, Michal
    COMPUTATIONAL SCIENCE - ICCS 2020, PT IV, 2020, 12140 : 117 - 127
  • [3] Ramp Loss based robust one-class SVM
    Xiao, Yingchao
    Wang, Huangang
    Xu, Wenli
    PATTERN RECOGNITION LETTERS, 2017, 85 : 15 - 20
  • [4] Improved one-class SVM classifier for sounds classification
    Rabaoui, A.
    Davy, M.
    Rossignol, S.
    Lachiri, Z.
    Ellouze, N.
    2007 IEEE CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, 2007, : 117 - +
  • [5] Robust one-class SVM for fault detection
    Xiao, Yingchao
    Wang, Huangang
    Xu, Wenli
    Zhou, Junwu
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 151 : 15 - 25
  • [6] One-class ensemble classifier for data imbalance problems
    Toshitaka Hayashi
    Hamido Fujita
    Applied Intelligence, 2022, 52 : 17073 - 17089
  • [7] One-class ensemble classifier for data imbalance problems
    Hayashi, Toshitaka
    Fujita, Hamido
    APPLIED INTELLIGENCE, 2022, 52 (15) : 17073 - 17089
  • [8] One-Class Classification Ensemble with Dynamic Classifier Selection
    Krawczyk, Bartosz
    Wozniak, Michal
    ADVANCES IN NEURAL NETWORKS - ISNN 2014, 2014, 8866 : 542 - 549
  • [9] Weighted One-Class Classifier Ensemble Based on Fuzzy Feature Space Partitioning
    Krawczyk, Bartosz
    Wozniak, Michal
    Cyganek, Boguslaw
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 2838 - 2843
  • [10] Robust AdaBoost based ensemble of one-class support vector machines
    Xing, Hong-Jie
    Liu, Wei-Tao
    INFORMATION FUSION, 2020, 55 : 45 - 58