The nonexistence of some ternary linear codes of dimension 6

被引:3
|
作者
Maruta, T [1 ]
机构
[1] Osaka Womens Univ, Fac Sci, Dept Appl Math, Sakai, Osaka 5900035, Japan
关键词
ternary linear codes; diversity; projective geometry;
D O I
10.1016/j.disc.2004.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The diversity (Phi(0), Phi(1)) of a ternary [n, k, d] code l with d equivalent to 1 or 2 (mod 3), k greater than or equal to 3, is defined by [GRAPHICS] where A(i) stands for the number of codewords with weight i. l is always extendable if (Phi(0), Phi(1)) is one of four types (Extendability of ternary linear codes, Des. Codes Cryptogr., to appear). Using this property, we prove the nonexistence of ternary linear codes with parameters [69, 6: 44], [81, 6, 52], [108, 6, 70], [157, 6, 103], [256, 6, 169], [257, 6, 170], [269, 6, 178]. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:125 / 133
页数:9
相关论文
共 50 条