Machine Learning-Assisted Screening of Stepped Alloy Surfaces for C1 Catalysis

被引:20
|
作者
Liu, Xinyan [1 ,2 ]
Cai, Cheng [3 ]
Zhao, Wanghui [3 ]
Peng, Hong-Jie [1 ]
Wang, Tao [3 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[3] Westlake Univ, Ctr Artificial Photosynth Solar Fuels, Sch Sci, Hangzhou 310024, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
machine learning; surface reactivity prediction; high-throughput screening; C1; catalysis; alloy catalysts; microkinetic modeling; ACTIVE-SITE; METHANOL SYNTHESIS; CO2; HYDROGENATION; CHEMISORPTION; METHANATION; SELECTIVITY; ADSORPTION; REDUCTION; GAS;
D O I
10.1021/acscatal.2c00648
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Efficient reactivity assessment for stepped alloy surfaces presents a major challenge in designing effective catalysts for industrial catalyticconversion of single-carbon (C1) molecules. In this work, we propose a machinelearning (ML)-assisted approach to screen active and stable binary alloys forvarious C1catalytic processes. Leveraging only non-ab initio, simple bulkmaterial properties as input features, the ML models exhibit impressive accuracyfor predicting site-specific adsorption energies of atomic carbon and oxygen,which enable not only fast navigation through abundant material space but alsoextraction of explicable physical insights. The effectiveness of the ML models isfurther validated by applying their predictions to catalyst screening for commonreactions in C1catalysis, as well as a detailed kinetic study on one examplecandidate, Cu3Pd. This data-driven approach with fully interpretable physicalfeatures demonstrates the possibility of unearthing underlying catalyst design principles from apparent data and paves the road for the discovery of desirable alloy catalysts
引用
收藏
页码:4252 / 4260
页数:9
相关论文
共 50 条
  • [1] Interpretable machine learning-assisted screening of perovskite oxides
    Zhao, Jie
    Wang, Xiaoyan
    Li, Haobo
    Xu, Xiaoyong
    [J]. RSC ADVANCES, 2024, 14 (06) : 3909 - 3922
  • [2] Machine learning-assisted screening for cognitive impairment in the emergency department
    Yadgir, Simon R.
    Engstrom, Collin
    Jacobsohn, Gwen Costa
    Green, Rebecca K.
    Jones, Courtney M. C.
    Cushman, Jeremy T.
    Caprio, Thomas, V
    Kind, Amy J. H.
    Lohmeier, Michael
    Shah, Manish N.
    Patterson, Brian W.
    [J]. JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2022, 70 (03) : 831 - 837
  • [3] Machine Learning-Assisted Screening of Herbal Medicine Extracts as Vaccine Adjuvants
    Hioki, Kou
    Hayashi, Tomoya
    Natsume-Kitatani, Yayoi
    Kobiyama, Kouji
    Temizoz, Burcu
    Negishi, Hideo
    Kawakami, Hitomi
    Fuchino, Hiroyuki
    Kuroda, Etsushi
    Coban, Cevayir
    Kawahara, Nobuo
    Ishii, Ken J.
    [J]. FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [4] Elevating perovskite efficiency via Machine Learning-Assisted screening of Passivators
    Wu, Zhuxia
    Kang, Lirui
    Huang, Tengcheng
    Xu, Xin
    Gao, Yujia
    Zhang, Weihai
    Xie, Weiguang
    Shi, Tingting
    [J]. Chemical Engineering Journal, 2024, 499
  • [5] Machine learning-assisted enzyme engineering
    Siedhoff, Niklas E.
    Schwaneberg, Ulrich
    Davari, Mehdi D.
    [J]. ENZYME ENGINEERING AND EVOLUTION: GENERAL METHODS, 2020, 643 : 281 - 315
  • [6] Machine Learning-Assisted Performance Testing
    Moghadam, Mahshid Helali
    [J]. ESEC/FSE'2019: PROCEEDINGS OF THE 2019 27TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, 2019, : 1187 - 1189
  • [7] Machine Learning-Assisted Evaluation of Circulating DNA Quantitative Analysis for Cancer Screening
    Tanos, Rita
    Tosato, Guillaume
    Otandault, Amaelle
    Dache, Zahra Al Amir
    Lasorsa, Laurence Pique
    Tousch, Geoffroy
    El Messaoudi, Safia
    Meddeb, Romain
    Assaf, Mona Diab
    Ychou, Marc
    Du Manoir, Stanislas
    Pezet, Denis
    Gagniere, Johan
    Colombo, Pierre-Emmanuel
    Jacot, William
    Assenat, Eric
    Dupuy, Marie
    Adenis, Antoine
    Mazard, Thibault
    Mollevi, Caroline
    Sayagues, Jose Maria
    Colinge, Jacques
    Thierry, Alain R.
    [J]. ADVANCED SCIENCE, 2020, 7 (18)
  • [8] The efficiency of machine learning-assisted platform for article screening in systematic reviews in orthopaedics
    Sathish Muthu
    [J]. International Orthopaedics, 2023, 47 : 551 - 556
  • [9] Machine learning-assisted morphological profiling for high throughput screening in neuromuscular diseases
    Lorintiu, O.
    Young, J.
    Chapuis, V.
    Compere, L.
    Duchemin-Pelletier, E.
    Anselmo, S.
    Ventre, E.
    [J]. NEUROMUSCULAR DISORDERS, 2020, 30 : S67 - S67