Dynamics of MHD instabilities near a ferromagnetic wall

被引:4
|
作者
Hughes, P. E. [1 ,2 ]
Levesque, J. P. [1 ]
Navratil, G. A. [1 ]
机构
[1] Columbia Univ, Plasma Phys Lab, New York, NY 10027 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
关键词
tokamaks; magnetohydrodynamics; plasma instabilities; ferromagnetic resistive wall mode; MAGNETIC-FIELD; TOKAMAK;
D O I
10.1088/1741-4326/aade58
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Prospective fusion component testing and DEMO power reactor concepts are expected to employ low-activation ferritic steels because of their ability to withstand the high neutron flux of the reactor environment. However, theory suggests that ferromagnetic material may amplify certain external MHD instabilities. Using its ferromagnetic-resistive wall mode (FRWM) upgrade, the High Beta Tokamak-Extended Pulse (HBT-EP) experiment has observed approximately doubled growth rates when operating with a close-fitting ferromagnetic first wall, compared to operation with a stainless steel first wall. The presence of a ferromagnetic wall correlates with earlier disruptions, and FRWM growth rates increase with decreasing mode rotation, as expected due to the increased skin depth allowing greater mode interaction with the bulk ferromagnetic material. It is also seen that introducing low-n asymmetries into the toroidal distribution of ferromagnetic material, similar to the ITER test blanket module toroidal asymmetry, changes the phase preference of rotating modes; meanwhile, a similar change in purely conducting material does not significantly change the mode's phase preference.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] WALL STABILIZATION OF MHD INSTABILITIES
    BERNARD, LC
    BERGER, D
    GRUBER, R
    TROYON, F
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1153 - 1153
  • [2] MHD instabilities occurring near/at the transport barrier
    Lao, LL
    PLASMA PHYSICS AND CONTROLLED FUSION, 2000, 42 : A51 - A64
  • [3] MHD INSTABILITIES IN WALL-STABILIZED DC ARCS
    STEFANOV, B
    ENIKOV, R
    PHYSICS LETTERS A, 1976, 57 (05) : 451 - 452
  • [4] Suprathermal electron dynamics and MHD instabilities in a tokamak
    Kamleitner, J.
    Coda, S.
    Decker, J.
    Graves, J. P.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (10)
  • [5] Magnetic Bloch oscillations and domain wall dynamics in a near-Ising ferromagnetic chain
    Hansen, Ursula B.
    Syljuasen, Olav F.
    Jensen, Jens
    Schaffer, Turi K.
    Andersen, Christopher R.
    Boehm, Martin
    Rodriguez-Rivera, Jose A.
    Christensen, Niels B.
    Lefmann, Kim
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [6] Magnetic Bloch oscillations and domain wall dynamics in a near-Ising ferromagnetic chain
    Ursula B. Hansen
    Olav F. Syljuåsen
    Jens Jensen
    Turi K. Schäffer
    Christopher R. Andersen
    Martin Boehm
    Jose A. Rodriguez-Rivera
    Niels B. Christensen
    Kim Lefmann
    Nature Communications, 13
  • [7] MHD INSTABILITIES IN ALCATOR
    DEKOCK, LCM
    MEDDENS, BJH
    ORNSTEIN, LT
    VANHEYNI.RJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (09): : 866 - 866
  • [8] MHD instabilities in tokamaks
    de Blank, HJ
    FUSION SCIENCE AND TECHNOLOGY, 2006, 49 (2T) : 118 - 130
  • [9] MHD instabilities in tokamaks
    de Blank, H. J.
    FUSION SCIENCE AND TECHNOLOGY, 2008, 53 (2T) : 122 - 134
  • [10] Introduction to MHD instabilities
    Goedbloed, JP
    FUSION SCIENCE AND TECHNOLOGY, 2004, 45 (2T) : 85 - 94