The Complexity of Non-Monotone Markets

被引:0
|
作者
Chen, Xi [1 ]
Paparas, Dimitris [1 ]
Yannakakis, Mihalis [1 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
关键词
Market equilibrium; computational complexity; CES utility; PPAD; FIXP; POLYNOMIAL-TIME; EQUILIBRIUM; EXISTENCE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce the notion of non-monotone utilities, which covers a wide variety of utility functions in economic theory. We show that it is PPAD-hard to compute an approximate Arrow-Debreu market equilibrium in markets with linear and non-monotone utilities. Building on this result, we settle the long-standing open problem regarding the computation of an approximate Arrow-Debreu market equilibrium in markets with CES utilities, by proving that it is PPAD-complete when the Constant Elasticity of Substitution parameter, rho, is any constant less than -1.
引用
下载
收藏
页码:181 / 190
页数:10
相关论文
共 50 条
  • [1] The Complexity of Non-Monotone Markets
    Chen, Xi
    Paparas, Dimitris
    Yannakakis, Mihalis
    JOURNAL OF THE ACM, 2017, 64 (03)
  • [2] THE GAP BETWEEN MONOTONE AND NON-MONOTONE CIRCUIT COMPLEXITY IS EXPONENTIAL
    TARDOS, E
    COMBINATORICA, 1988, 8 (01) : 141 - 142
  • [3] MONOTONE VS NON-MONOTONE INDUCTION
    HARRINGTON, LA
    KECHRIS, AS
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (06) : 888 - 890
  • [4] Monotone simulations of non-monotone proofs
    Atserias, A
    Galesi, N
    Pudlák, P
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2002, 65 (04) : 626 - 638
  • [5] Bounds of Non-Monotone Complexity for the Multi-Valued Logic Functions
    Kochergin, V. V.
    Mikhailovich, A., V
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2020, 162 (03): : 311 - 321
  • [6] Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity
    Fahrbach, Matthew
    Mirrokni, Vahab
    Zadimoghaddam, Morteza
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [7] Non-Monotone Convergence Schemes
    Dobkevich, Maria
    MATHEMATICAL MODELLING AND ANALYSIS, 2012, 17 (04) : 589 - 597
  • [8] Non-monotone Averaging Aggregation
    Beliakov, Gleb
    Yu, Shui
    Paternain, Daniel
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 2905 - 2908
  • [9] The non-monotone conic algorithm
    Manoussakis, G. E.
    Botsaris, C. A.
    Grapsa, T. N.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2008, 29 (01): : 1 - 15
  • [10] Computability and non-monotone induction
    Normann, Dag
    COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2024, 13 (02): : 161 - 196