IMPLICIT-EXPLICIT RUNGE-KUTTA-ROSENBROCK METHODS WITH ERROR ANALYSIS FOR NONLINEAR STIFF DIFFERENTIAL EQUATIONS

被引:0
|
作者
Huang, Bin [1 ,2 ]
Xiao, Aiguo [1 ,2 ]
Zhang, Gengen [3 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[3] South China Normal Univ, South China Res Ctr Appl Math & Interdisciplinary, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Stiff differential equations; Implicit-explicit Runge-Kutta-Rosenbrock method; Order conditions; Convergence; STABILITY; CONVERGENCE; SCHEMES;
D O I
10.4208/jcm.2005-m2019-0238
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Implicit-explicit Runge-Kutta-Rosenbrock methods are proposed to solve nonlinear stiff ordinary differential equations by combining linearly implicit Rosenbrock methods with explicit Runge-Kutta methods. First, the general order conditions up to order 3 are obtained. Then, for the nonlinear stiff initial-value problems satisfying the one-sided Lipschitz condition and a class of singularly perturbed initial-value problems, the corresponding errors of the implicit-explicit methods are analysed. At last, some numerical examples are given to verify the validity of the obtained theoretical results and the effectiveness of the methods.
引用
收藏
页码:555 / 576
页数:22
相关论文
共 50 条
  • [1] A CLASS OF RUNGE-KUTTA-ROSENBROCK METHODS FOR SOLVING STIFF DIFFERENTIAL-EQUATIONS
    VERWER, JG
    SCHOLZ, S
    BLOM, JG
    LOUTERNOOL, M
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (01): : 13 - 20
  • [2] Implicit-explicit Runge-Kutta methods for stiff combustion problems
    Lindblad, E.
    Valiev, D. M.
    Muller, B.
    Rantakokko, J.
    Lotstedt, P.
    Liberman, M. A.
    [J]. SHOCK WAVES, VOL 1, PROCEEDINGS, 2009, : 299 - +
  • [3] ASYMPTOTIC PRESERVING IMPLICIT-EXPLICIT RUNGE-KUTTA METHODS FOR NONLINEAR KINETIC EQUATIONS
    Dimarco, Giacomo
    Pareschi, Lorenzo
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 1064 - 1087
  • [4] Solving semi-linear stiff neutral equations by implicit-explicit Runge-Kutta methods
    Tan, Zengqiang
    Zhang, Chengjian
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (12) : 2561 - 2581
  • [5] Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations
    Ascher, UM
    Ruuth, SJ
    Spiteri, RJ
    [J]. APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) : 151 - 167
  • [6] STABILITY OF IMPLICIT RUNGE-KUTTA METHODS FOR NONLINEAR STIFF DIFFERENTIAL-EQUATIONS
    SCHMITT, BA
    [J]. BIT, 1988, 28 (04): : 884 - 897
  • [7] Extrapolated Implicit-Explicit Runge-Kutta Methods
    Cardone, Angelamaria
    Jackiewicz, Zdzislaw
    Sandu, Adrian
    Zhang, Hong
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2014, 19 (01) : 18 - 43
  • [9] ON IMPLICIT RUNGE-KUTTA METHODS WITH A GLOBAL ERROR ESTIMATION FOR STIFF DIFFERENTIAL-EQUATIONS
    SCHOLZ, S
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (08): : 253 - 257
  • [10] Application of Runge-Kutta-Rosenbrock methods to the analysis of flexible multibody systems
    Meijaard, JP
    [J]. MULTIBODY SYSTEM DYNAMICS, 2003, 10 (03) : 263 - 288