Synchronization of fractional-order unified chaotic system via linear control

被引:19
|
作者
Zhang Ruo-Xun [1 ,2 ,3 ]
Yang Shi-Ping [1 ,2 ]
Liu Yong-Li [3 ]
机构
[1] Hebei Normal Univ, Coll Phys Sci & Informat Engn, Shijiazhuang 050016, Peoples R China
[2] Hebei Adv Thin Films Lab, Shijiazhuang 050016, Peoples R China
[3] Xingtai Univ, Coll Elementary Educ, Xingtai 054001, Peoples R China
关键词
fractional-order unified chaotic system; chaos synchronization; linear control; CHEN SYSTEM;
D O I
10.7498/aps.59.1549
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Chaos synchronization in fractional-order unified chaotic system is disscussed in this paper. Based on the stability theory of fractional-order system, the control law is presented to achieve chaos synchronization. The advantage of the proposed controllers is that they are linear and have lower dimensions than that of the states. With this technique it is very easy to find the suitable feedback constant. Simulation results for fractional-order Lorenz, Lu and Chen chaotic systems are provided to illustrate the effectiveness of the proposed scheme.
引用
收藏
页码:1549 / 1553
页数:5
相关论文
共 30 条
  • [1] Chaos in fractional-order autonomous nonlinear systems
    Ahmad, WM
    Sprott, JC
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 16 (02) : 339 - 351
  • [2] LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2
    CAPUTO, M
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05): : 529 - &
  • [3] Study on the fractional-order Liu chaotic system with circuit experiment and its control
    Chen Xiang-Rong
    Liu Chong-Xin
    Wang Fa-Qiang
    Li Yong-Xun
    [J]. ACTA PHYSICA SINICA, 2008, 57 (03) : 1416 - 1422
  • [4] Chaos synchronization of the fractional Lu system
    Deng, WH
    Li, CP
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 353 (1-4) : 61 - 72
  • [5] A predictor-corrector approach for the numerical solution of fractional differential equations
    Diethelm, K
    Ford, NJ
    Freed, AD
    [J]. NONLINEAR DYNAMICS, 2002, 29 (1-4) : 3 - 22
  • [6] Gao X, 2005, CHINESE PHYS, V14, P908, DOI 10.1088/1009-1963/14/5/009
  • [7] Chaos in the fractional order periodically forced complex Duffing's oscillators
    Gao, X
    Yu, JB
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 24 (04) : 1097 - 1104
  • [8] Chaotic dynamics of the fractional Lorenz system
    Grigorenko, I
    Grigorenko, E
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (03)
  • [9] CHAOS IN A FRACTIONAL ORDER CHUAS SYSTEM
    HARTLEY, TT
    LORENZO, CF
    QAMMER, HK
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (08): : 485 - 490
  • [10] Synchronizing fractional chaotic systems based on Lyapunov equation
    Hu Jian-Bing
    Han Yan
    Zhao Ling-Dong
    [J]. ACTA PHYSICA SINICA, 2008, 57 (12) : 7522 - 7526