Distributionally robust chance-constrained games: existence and characterization of Nash equilibrium

被引:15
|
作者
Singh, Vikas Vikram [1 ]
Jouini, Oualid [2 ]
Lisser, Abdel [1 ]
机构
[1] Univ Paris Sud XI, Lab Rech Informat, Bat 650, F-91405 Orsay, France
[2] Univ Paris Saclay, Cent Supelec, Lab Genie Ind, F-92290 Chatenay Malabry, France
关键词
Distributionally robust chance-constrained games; Chance constraints; Nash equilibrium; Semidefinite programming; Mathematical program; ZERO-SUM GAMES; PROGRAMMING APPROACH; LINEAR-PROGRAMS; ELECTRIC-POWER; MODEL; UNCERTAINTY; DEMAND; MARKET;
D O I
10.1007/s11590-016-1077-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider an n-player finite strategic game. The payoff vector of each player is a random vector whose distribution is not completely known. We assume that the distribution of a random payoff vector of each player belongs to a distributional uncertainty set. We define a distributionally robust chance-constrained game using worst-case chance constraint. We consider two types of distributional uncertainty sets. We show the existence of a mixed strategy Nash equilibrium of a distributionally robust chance-constrained game corresponding to both types of distributional uncertainty sets. For each case, we show a one-to-one correspondence between a Nash equilibrium of a game and a global maximum of a certain mathematical program.
引用
收藏
页码:1385 / 1405
页数:21
相关论文
共 50 条
  • [1] Distributionally robust chance-constrained games: existence and characterization of Nash equilibrium
    Vikas Vikram Singh
    Oualid Jouini
    Abdel Lisser
    [J]. Optimization Letters, 2017, 11 : 1385 - 1405
  • [2] Existence of Nash equilibrium for chance-constrained games
    Singh, Vikas Vikram
    Jouini, Oualid
    Lisser, Abdel
    [J]. OPERATIONS RESEARCH LETTERS, 2016, 44 (05) : 640 - 644
  • [3] On Distributionally Robust Chance-Constrained Linear Programs
    G. C. Calafiore
    L. El Ghaoui
    [J]. Journal of Optimization Theory and Applications, 2006, 130 : 1 - 22
  • [4] On distributionally robust chance-constrained linear programs
    Calafiore, G. C.
    El Ghaoui, L.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 130 (01) : 1 - 22
  • [5] CCGnet: A deep learning approach to predict Nash equilibrium of chance-constrained games
    Wu, Dawen
    Lisser, Abdel
    [J]. INFORMATION SCIENCES, 2023, 627 : 20 - 33
  • [6] The Distributionally Robust Chance-Constrained Vehicle Routing Problem
    Ghosal, Shubhechyya
    Wiesemann, Wolfram
    [J]. OPERATIONS RESEARCH, 2020, 68 (03) : 716 - 732
  • [7] Bayesian Optimization for Distributionally Robust Chance-constrained Problem
    Inatsu, Yu
    Takeno, Shion
    Karasuyama, Masayuki
    Takeuchi, Ichiro
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [8] DISTRIBUTIONALLY ROBUST CHANCE-CONSTRAINED MINIMUM VARIANCE BEAMFORMING
    Zhang, Xiao
    Feng, Qiang
    Ge, Ning
    Lu, Jianhua
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2881 - 2885
  • [9] Kernel distributionally robust chance-constrained process optimization
    Yang, Shu-Bo
    Li, Zukui
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2022, 165
  • [10] Distributionally Robust Chance-Constrained Generation Expansion Planning
    Pourahmadi, Farzaneh
    Kazempour, Jalal
    Ordoudis, Christos
    Pinson, Pierre
    Hosseini, Seyed Hamid
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (04) : 2888 - 2903