Composition and Preparation Method of Rhenium- and Tungsten-Containing Porous Ceramic Converters Influence on the Cumene Dehydrogenation to α-Methylstyrene Process Specific Features

被引:3
|
作者
Fedotov, A. S. [1 ]
Bagdatov, R. A. [1 ]
Grachev, D. Yu. [1 ]
Uvarov, V. I. [2 ]
Kapustin, R. D. [2 ]
Alymov, M. I. [2 ]
Paul, S. [3 ]
Tsodikov, M. V. [1 ]
机构
[1] Russian Acad Sci, AV Topchiev Inst Petrochem Synth, Moscow 119991, Russia
[2] Russian Acad Sci, Merzhanov Inst Struct Macrokinet & Mat Sci, Chernogolovka 142432, Russia
[3] Univ Artois, Univ Lille, UCCS Unite Catalyse & Chim Solide, Cent Lille,ENSCL,UMR 8181, F-59000 Lille, France
基金
俄罗斯科学基金会;
关键词
heterogeneous catalysis; porous catalysts; rhenium; tungsten; self-propagating high-temperature synthesis; dehydrogenation; cumene; monomers; styrene; alpha-methylstyrene; REDUCTION; STABILITY; OXIDE; DRY;
D O I
10.1134/S0965544122040090
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
The latest research results on the specific features of the process of cumene dehydrogenation to alpha-methylstyrene (AMS) on the porous ceramic catalytic converters were presented. The influence of the method of formation of the mono- and bimetallic rhenium- and tungsten-based components on the activity and selectivity of the synthesized converters was evaluated. It was found that the monometallic tungsten-containing converter obtained by combining self-propagating high-temperature synthesis (SHS) with the sol-gel process has the optimal composition. The experiments showed that, for this converter, the temperature range of effective operation is 550-600 degrees C. In this range the space-time yield of AMS reached 14% at a maximum productivity of 20.57 g h(-1) dm(-3). The degree of carburization of the sample after 6 h of the experiment did not exceed 5 wt %, indicating its high resistance against coking.
引用
收藏
页码:660 / 671
页数:12
相关论文
共 7 条
  • [1] Composition and Preparation Method of Rhenium- and Tungsten-Containing Porous Ceramic Converters Influence on the Cumene Dehydrogenation to α-Methylstyrene Process Specific Features
    A. S. Fedotov
    R. A. Bagdatov
    D. Yu. Grachev
    V. I. Uvarov
    R. D. Kapustin
    M. I. Alymov
    S. Paul
    M. V. Tsodikov
    Petroleum Chemistry, 2022, 62 : 660 - 671
  • [2] Erratum to: Composition and Preparation Method of Rhenium- and Tungsten-Containing Porous Ceramic Converters Influence on the Cumene Dehydrogenation to α-Methylstyrene Process Specific Features
    A. S. Fedotov
    R. A. Bagdatov
    D. Yu. Grachev
    V. I. Uvarov
    R. D. Kapustin
    M. I. Alymov
    S. Paul
    M. V. Tsodikov
    Petroleum Chemistry, 2022, 62 : 811 - 811
  • [3] Composition and Preparation Method of Rhenium- and Tungsten-Containing Porous Ceramic Converters Influence on the Cumene Dehydrogenation to α-Methylstyrene Process Specific Features (vol 60, pg 660, 2022)
    Fedotov, A. S.
    Bagdatov, R. A.
    Grachev, D. Yu.
    Uvarov, V. I.
    Kapustin, R. D.
    Alymov, M. I.
    Paul, S.
    Tsodikov, M. V.
    PETROLEUM CHEMISTRY, 2022, 62 (07) : 811 - 811
  • [4] Dehydrogenation of Cumene to α-Methylstyrene over Tungsten-Containing Porous Ceramic Converters
    Fedotov, A. S.
    Grachev, D. Yu.
    Kapustin, R. D.
    Alymov, M. I.
    Tsodikov, M. V.
    PETROLEUM CHEMISTRY, 2023, 63 (09) : 1110 - 1118
  • [5] Dehydrogenation of Cumene to α-Methylstyrene over Tungsten-Containing Porous Ceramic Converters
    A. S. Fedotov
    D. Yu. Grachev
    R. D. Kapustin
    M. I. Alymov
    M. V. Tsodikov
    Petroleum Chemistry, 2023, 63 : 1110 - 1118
  • [6] Dehydrogenation of Ethylbenzene to Styrene over Rhenium- and Tungsten-Containing Porous Ceramic Converters
    A. S. Fedotov
    D. Yu. Grachev
    R. A. Bagdatov
    M. V. Tsodikov
    V. I. Uvarov
    R. D. Kapustin
    S. Paul
    F. Dumeignil
    Petroleum Chemistry, 2023, 63 : 453 - 462
  • [7] Dehydrogenation of Ethylbenzene to Styrene over Rhenium- and Tungsten-Containing Porous Ceramic Converters
    Fedotov, A. S.
    Grachev, D. Yu.
    Bagdatov, R. A.
    Tsodikov, M. V.
    Uvarov, V. I.
    Kapustin, R. D.
    Paul, S.
    Dumeignil, F.
    PETROLEUM CHEMISTRY, 2023, 63 (04) : 453 - 462