A class of degenerate elliptic eigenvalue problems

被引:6
|
作者
Lucia, Marcello [1 ]
Schuricht, Friedemann [2 ]
机构
[1] CUNY Coll Staten Isl, Dept Math, CSI, Staten Isl, NY 10314 USA
[2] Tech Univ Dresden, Fachbereich Math, D-01062 Dresden, Germany
关键词
Nonlinear eigenvalue problems; quasilinear elliptic equations; critical point theory; convex analysis; nonsmooth analysis; CRITICAL-POINT THEORY; P-LAPLACE OPERATOR; 1-LAPLACE OPERATOR; INDEFINITE WEIGHT;
D O I
10.1515/anona-2012-0202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using a critical point theory in metric spaces. Our results extend the eigenvalue problem of the p-Laplace operator to a much more general setting.
引用
收藏
页码:91 / 125
页数:35
相关论文
共 50 条