Legendre Kantorovich methods for Uryshon integral equations

被引:2
|
作者
Allouch, Chafik [1 ]
Arrai, Mohamed [1 ]
Tahrichi, Mohammed [2 ]
机构
[1] Univ Mohammed 1, FPN, MSC Team, LAMAO Lab, Nador, Morocco
[2] Univ Mohammed 1, ANO Lab, ANAA Team, ESTO, Oujda, Morocco
关键词
Uryshon equation; Kantorovich method; Projection operator; Legendre polynomial; Discrete methods; Superconvergence; SPECTRAL PROJECTION METHODS; COLLOCATION METHOD;
D O I
10.22075/ijnaa.2021.22966.2441
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the Kantorovich method for the numerical solution of nonlinear Uryshon equations with a smooth kernel is considered. The approximating operator is chosen to be either the orthogonal projection or an interpolatory projection using Legendre polynomial basis. The order of convergence of the proposed method and those of superconvergence of the iterated versions are established. We show that these orders of convergence are valid in the corresponding discrete methods obtained by replacing the integration by a quadrature rule. Numerical examples are given to illustrate the theoretical estimates.
引用
收藏
页码:143 / 157
页数:15
相关论文
共 50 条
  • [1] Legendre spectral projection methods for Urysohn integral equations
    Das, Payel
    Sahani, Mitali Madhumita
    Nelakanti, Gnaneshwar
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 263 : 88 - 102
  • [2] Legendre Spectral Projection Methods for Fredholm–Hammerstein Integral Equations
    Payel Das
    Mitali Madhumita Sahani
    Gnaneshwar Nelakanti
    Guangqing Long
    [J]. Journal of Scientific Computing, 2016, 68 : 213 - 230
  • [3] Legendre Superconvergent Degenerate Kernel and Nystrom Methods for Fredholm Integral Equations
    Bouda, Hamza
    Allouch, Chafik
    Tahrichi, Mohammed
    [J]. SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (01): : 45 - 60
  • [4] Legendre Spectral Projection Methods for Fredholm-Hammerstein Integral Equations
    Das, Payel
    Sahani, Mitali Madhumita
    Nelakanti, Gnaneshwar
    Long, Guangqing
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) : 213 - 230
  • [5] Legendre spectral projection methods for Fredholm integral equations of first kind
    Patel, Subhashree
    Panigrahi, Bijaya Laxmi
    Nelakanti, Gnaneshwar
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2022, 30 (05): : 677 - 691
  • [6] Legendre Superconvergent Degenerate Kernel and Nyström Methods for Nonlinear Integral Equations
    C. Allouch
    M. Arrai
    H. Bouda
    M. Tahrichi
    [J]. Ukrainian Mathematical Journal, 2023, 75 : 663 - 681
  • [7] Legendre Spectral Projection Methods for Hammerstein Integral Equations with Weakly Singular Kernel
    Panigrahi B.L.
    [J]. International Journal of Applied and Computational Mathematics, 2018, 4 (6)
  • [8] Legendre Superconvergent Degenerate Kernel and Nyström Methods for Nonlinear Integral Equations
    Allouch, C.
    Arrai, M.
    Bouda, H.
    Tahrichi, M.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (5) : 663 - 681
  • [9] Superconvergence of Legendre spectral projection methods for Fredholm-Hammerstein integral equations
    Mandal, Mournita
    Nelakanti, Gnaneshwar
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 319 : 423 - 439
  • [10] Discrete Legendre spectral projection methods for Fredholm-Hammerstein integral equations
    Das, Payel
    Nelakanti, Gnaneshwar
    Long, Guangqing
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 278 : 293 - 305