Sparse l2-norm Regularized Regression for Face Recognition

被引:0
|
作者
Qudaimat, Ahmad J. [1 ,2 ]
Demirel, Hasan [2 ]
机构
[1] Palestine Polytech Univ PPU, Elect Engn Dept, Hebron, Palestine
[2] Eastern Mediterranean Univ EMU, Elect & Elect Engn Dept, Famagusta, North Cyprus, Turkey
关键词
Sparsifying Transform; Face Recognition; Dictionary Learning; Transform Learning; PROJECTIONS;
D O I
10.5220/0007355104530458
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new l(2)-norm regularized regression based face recognition method is proposed, with l(0)-norm constraint to ensure sparse projection. The proposed method aims to create a transformation matrix that transform the images to sparse vectors with positions of nonzero coefficients depending on the image class. The classification of a new image is a simple process that only depends on calculating the norm of vectors to decide the class of the image. The experimental results on benchmark face databases show that the new method is comparable and sometimes superior to alternative projection based methods published in the field of face recognition.
引用
收藏
页码:453 / 458
页数:6
相关论文
共 50 条
  • [1] Combining L1-norm and L2-norm based sparse representations for face recognition
    Zhu, Qi
    Zhang, Daoqiang
    Sun, Han
    Li, Zhengming
    [J]. OPTIK, 2015, 126 (7-8): : 719 - 724
  • [2] Sparse Representation Classification Based Linear Integration of l1-norm and l2-norm for Robust Face Recognition
    Awedat, Khalfalla
    Essa, Almabrok
    Asari, Vijayan
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2017, : 447 - 451
  • [3] L1-norm plus L2-norm sparse parameter for image recognition
    Feng, Qingxiang
    Zhu, Qi
    Tang, Lin-Lin
    Pan, Jeng-Shyang
    [J]. OPTIK, 2015, 126 (23): : 4078 - 4082
  • [4] A sparse regularized nuclear norm based matrix regression for face recognition with contiguous occlusion
    Chen, Zhe
    Wu, Xiao-Jun
    Kittler, Josef
    [J]. PATTERN RECOGNITION LETTERS, 2019, 125 : 494 - 499
  • [5] Estimation of the l2-norm and testing in sparse linear regression with unknown variance
    Carpentier, Alexandra
    Collier, Olivier
    Comminges, Laetitia
    Tsybakov, Alexandre B.
    Wang, Yuhao
    [J]. BERNOULLI, 2022, 28 (04) : 2744 - 2787
  • [6] Supervised feature learning via l2-norm regularized logistic regression for 3D object recognition
    Zou, Fuhao
    Wang, Yunfei
    Yang, Yang
    Zhou, Ke
    Chen, Yunpeng
    Song, Jingkuan
    [J]. NEUROCOMPUTING, 2015, 151 : 603 - 611
  • [7] Robust nuclear norm regularized regression for face recognition with occlusion
    Qian, Jianjun
    Luo, Lei
    Yang, Jian
    Zhang, Fanlong
    Lin, Zhouchen
    [J]. PATTERN RECOGNITION, 2015, 48 (10) : 3145 - 3159
  • [8] Enhanced Group Sparse Regularized Nonconvex Regression for Face Recognition
    Zhang, Chao
    Li, Huaxiong
    Chen, Chunlin
    Qian, Yuhua
    Zhou, Xianzhong
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (05) : 2438 - 2452
  • [9] Discriminative Face Recognition Methods with Structure and Label Information via l2-Norm Regularization
    Wang, Keqi
    Hu, Haifeng
    Li, Lin
    Liu, Tundong
    [J]. NEURAL PROCESSING LETTERS, 2020, 51 (01) : 639 - 655
  • [10] An l2-norm Regularized Underwater Target Classifier with Improved Generalization Capability
    Chandran, Satheesh C.
    Kamal, Suraj
    Mujeeb, A.
    Supriya, M. H.
    [J]. 2015 INTERNATIONAL SYMPOSIUM ON OCEAN ELECTRONICS (SYMPOL), 2015,