On the number of critical periods for planar polynomial systems of arbitrary degree

被引:20
|
作者
Gasull, Armengol [2 ]
Liu, Changjian [1 ]
Yang, Jiazhong [3 ]
机构
[1] Suzhou Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Reversible center; Period function; Hilbert's 16th problem; Critical periods; VECTOR-FIELDS; LIMIT-CYCLES; BIFURCATION; EQUATIONS; CENTERS;
D O I
10.1016/j.jde.2010.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a class of planar systems of arbitrary degree n having a reversible center at the origin and such that the number of critical periods on its period annulus grows quadratically with n. As far as we know, the previous results on this subject gave systems having linear growth. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:684 / 692
页数:9
相关论文
共 50 条
  • [1] On the number of critical periods for planar polynomial systems
    Cima, Anna
    Gasull, Armengol
    da Silva, Paulo R.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (07) : 1889 - 1903
  • [2] New lower bound for the number of critical periods for planar polynomial systems
    Cen, Xiuli
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 271 : 480 - 498
  • [3] Critical periods in planar polynomial centers near a maximum number of cusps
    De Maesschalck, Peter
    Torregrosa, Joan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 380 : 181 - 197
  • [4] CRITICAL PERIODS OF PLANAR REVERTIBLE VECTOR FIELD WITH THIRD-DEGREE POLYNOMIAL FUNCTIONS
    Yu, Pei
    Han, Maoan
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (01): : 419 - 433
  • [5] New Family of Centers of Planar Polynomial Differential Systems of Arbitrary Even Degree
    Jaume Llibre
    Marzieh Mousavi
    Arefeh Nabavi
    [J]. Journal of Dynamical and Control Systems, 2019, 25 : 619 - 630
  • [6] New Family of Centers of Planar Polynomial Differential Systems of Arbitrary Even Degree
    Llibre, Jaume
    Mousavi, Marzieh
    Nabavi, Arefeh
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2019, 25 (04) : 619 - 630
  • [7] Bifurcation of critical periods of polynomial systems
    Fercec, Brigita
    Levandovskyy, Viktor
    Romanovski, Valery G.
    Shafer, Douglas S.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) : 3825 - 3853
  • [8] On the number of limit cycles surrounding a unique singular point for polynomial differential systems of arbitrary degree
    Garcia, Belen
    Llibre, Jaume
    Perez del Rio, Jesus S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (12) : 4461 - 4469
  • [9] SOME PROPERTIES OF PLANAR POLYNOMIAL SYSTEMS OF EVEN DEGREE
    GALEOTTI, M
    VILLARINI, M
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1992, 161 : 299 - 313
  • [10] SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A CENTER IN POLYNOMIAL SYSTEMS OF ARBITRARY DEGREE
    Giacomini, H.
    Ndiaye, M.
    [J]. PUBLICACIONS MATEMATIQUES, 1996, 40 (01) : 205 - 214