Fourier Multipliers in Hardy Spaces in Tubes over Open Cones

被引:1
|
作者
Tovstolis, Alexander V. [1 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
关键词
Fourier multiplier; Hardy spaces in tubes over open cones; Fourier integral; Multiplier defined by a radial function; Bochner-Riesz means; Nikol'skij type inequality; Non-increasing rearrangement;
D O I
10.1007/s40315-014-0079-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain effective sufficient conditions for multipliers of Fourier integrals acting from H-p (T-Gamma) to H-q (T-Gamma), 0 < p <= q <= 1. We also show that they are sharp in some cases. Special attention is paid to the means of Fourier integrals with compactly supported radial kernels. As an application, the critical index for the Bochner-Riesz means to define a bounded linear operator from H-p to H-q is found. Surprisingly, it does not depend on p.
引用
收藏
页码:681 / 719
页数:39
相关论文
共 50 条
  • [1] Fourier Multipliers in Hardy Spaces in Tubes over Open Cones
    Alexander V. Tovstolis
    Computational Methods and Function Theory, 2014, 14 : 681 - 719
  • [2] Fourier multipliers on the real Hardy spaces
    Sebastian Król
    Archiv der Mathematik, 2016, 106 : 457 - 470
  • [3] TRILINEAR FOURIER MULTIPLIERS ON HARDY SPACES
    Lee, Jin Bong
    Park, Bae Jun
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2024, 23 (05) : 2217 - 2278
  • [4] Fourier multipliers on the real Hardy spaces
    Krol, Sebastian
    ARCHIV DER MATHEMATIK, 2016, 106 (05) : 457 - 470
  • [5] On the boundedness of multilinear Fourier multipliers on Hardy spaces
    Lee, Jin Bong
    Park, Bae Jun
    JOURNAL D ANALYSE MATHEMATIQUE, 2023, 150 (01): : 275 - 301
  • [6] Fourier Multipliers for Hardy Spaces of Dirichlet Series
    Aleman, Alexandru
    Olsen, Jan-Fredrik
    Saksman, Eero
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (16) : 4368 - 4378
  • [7] On the boundedness of multilinear Fourier multipliers on Hardy spaces
    Jin Bong Lee
    Bae Jun Park
    Journal d'Analyse Mathématique, 2023, 150 : 275 - 301
  • [8] Fourier multipliers for Hardy spaces on graded Lie groups
    Hong, Qing
    Hu, Guorong
    Ruzhansky, Michael
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (05) : 1729 - 1750
  • [9] Fourier Spectrum Characterizations of Hp Spaces on Tubes Over Cones for 1 ≤ p ≤ ∞
    Li, Hai-Chou
    Deng, Guan-Tie
    Qian, Tao
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (05) : 1193 - 1218
  • [10] Fourier multipliers on power-weighted Hardy spaces
    Quek, T. S.
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (07) : 1013 - 1030