Enabling Dark Energy Science with Deep Generative Models of Galaxy Images

被引:0
|
作者
Ravanbakhsh, Siamak [1 ]
Lanusse, Francois [2 ]
Mandelbaum, Rachel [2 ]
Schneider, Jeff [1 ]
Poczos, Barnabas [1 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding the nature of dark energy, the mysterious force driving the accelerated expansion of the Universe, is a major challenge of modern cosmology. The next generation of cosmological surveys, specifically designed to address this issue, rely on accurate measurements of the apparent shapes of distant galaxies. However, shape measurement methods suffer from various unavoidable biases and therefore will rely on a precise calibration to meet the accuracy requirements of the science analysis. This calibration process remains an open challenge as it requires large sets of high quality galaxy images. To this end, we study the application of deep conditional generative models in generating realistic galaxy images. In particular we consider variations on conditional variational autoencoder and introduce a new adversarial objective for training of conditional generative networks. Our results suggest a reliable alternative to the acquisition of expensive high quality observations for generating the calibration data needed by the next generation of cosmological surveys.
引用
收藏
页码:1488 / 1494
页数:7
相关论文
共 50 条
  • [1] Deep generative models for galaxy image simulations
    Lanusse, Francois
    Mandelbaum, Rachel
    Ravanbakhsh, Siamak
    Li, Chun-Liang
    Freeman, Peter
    Poczos, Barnabas
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 504 (04) : 5543 - 5555
  • [2] Deep Generative Models for Molecular Science
    Jorgensen, Peter B.
    Schmidt, Mikkel N.
    Winther, Ole
    [J]. MOLECULAR INFORMATICS, 2018, 37 (1-2)
  • [3] Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data
    Clampitt, J.
    Sanchez, C.
    Kwan, J.
    Krause, E.
    MacCrann, N.
    Park, Y.
    Troxel, M. A.
    Jain, B.
    Rozo, E.
    Rykoff, E. S.
    Wechsler, R. H.
    Blazek, J.
    Bonnett, C.
    Crocce, M.
    Fang, Y.
    Gaztanaga, E.
    Gruen, D.
    Jarvis, M.
    Miquel, R.
    Prat, J.
    Ross, A. J.
    Sheldon, E.
    Zuntz, J.
    Abbott, T. M. C.
    Abdalla, F. B.
    Armstrong, R.
    Becker, M. R.
    Benoit-Levy, A.
    Bernstein, G. M.
    Bertin, E.
    Brooks, D.
    Burke, D. L.
    Carnero Rosell, A.
    Kind, M. Carrasco
    Cunha, C. E.
    D'Andrea, C. B.
    da Costa, L. N.
    Desai, S.
    Diehl, H. T.
    Dietrich, J. P.
    Doel, P.
    Estrada, J.
    Evrard, A. E.
    Fausti Neto, A.
    Flaugher, B.
    Fosalba, P.
    Frieman, J.
    Gruendl, R. A.
    Honscheid, K.
    James, D. J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 465 (04) : 4204 - 4218
  • [4] Deep Latent Generative Models for Energy Disaggregation
    Bejarano, Gissella
    DeFazio, David
    Ramesh, Arti
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 850 - 857
  • [5] Comparison of Deep Generative Models for the Generation of Handwritten Character Images
    Kirbiyik, Omer
    Simsar, Enis
    Cemgil, A. Taylan
    [J]. 2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [6] Computing Absolute Free Energy with Deep Generative Models
    Ding, Xinqiang
    Zhang, Bin
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (45): : 10166 - 10172
  • [7] Computing Absolute Free Energy with Deep Generative Models
    Ding, Xinqiang
    Zhang, Bin
    [J]. BIOPHYSICAL JOURNAL, 2021, 120 (03) : 195A - 195A
  • [8] Exploring galaxy evolution with generative models
    Schawinski, Kevin
    Turp, M. Dennis
    Zhang, Ce
    [J]. ASTRONOMY & ASTROPHYSICS, 2018, 616
  • [9] Exploring galaxy evolution with generative models
    [J]. 1600, EDP Sciences (616):
  • [10] Deep learning at scale for the construction of galaxy catalogs in the Dark Energy Survey
    Khan, Asad
    Huerta, E. A.
    Wang, Sibo
    Gruendl, Robert
    Jennings, Elise
    Zheng, Huihuo
    [J]. PHYSICS LETTERS B, 2019, 795 : 248 - 258