Localization of Flying Bats from Multichannel Audio Signals by Estimating Location Map with Convolutional Neural Networks

被引:2
|
作者
Fujimori, Kazuki [1 ]
Raytchev, Bisser [1 ]
Kaneda, Kazufumi [1 ]
Yamada, Yasufumi [1 ]
Teshima, Yu [2 ]
Fujioka, Emyo [2 ]
Hiryu, Shizuko [2 ]
Tamaki, Toru [3 ]
机构
[1] Hiroshima Univ, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 7398527, Japan
[2] Doshisha Univ, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 6100394, Japan
[3] Nagoya Inst Technol, Showa Ku, Gokiso Cho, Nagoya, Aichi 4668555, Japan
关键词
bat; multichannel; ultrasound signal; CNN; location estimation; SOUND SOURCE LOCALIZATION; PIPISTRELLUS-ABRAMUS; RHINOLOPHUS-FERRUMEQUINUM; ECHOLOCATION;
D O I
10.20965/jrm.2021.p0515
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We propose a method that uses ultrasound audio signals from a multichannel microphone array to estimate the positions of flying bats. The proposed model uses a deep convolutional neural network that takes multichannel signals as input and outputs the probability maps of the locations of bats. We present experimental results using two ultrasound audio clips of different bat species and show numerical simulations with synthetically generated sounds.
引用
收藏
页码:515 / 525
页数:11
相关论文
共 50 条
  • [1] Two Convolutional Neural Networks for Bird Detection in Audio Signals
    Grill, Thomas
    Schlueter, Jan
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1764 - 1768
  • [2] Timbre Analysis of Music Audio Signals with Convolutional Neural Networks
    Pons, Jordi
    Slizovskaia, Olga
    Gong, Rong
    Gomez, Emilia
    Serra, Xavier
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 2744 - 2748
  • [3] Estimating High Definition Map Parameters with Convolutional Neural Networks
    Bittel, Sebastian
    Rehfeld, Timo
    Weber, Michael
    Zoellner, J. Marius
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 52 - 56
  • [4] Detection of Moving Vehicles From Multichannel Acoustic Signals Using Convolutional Recurrent Neural Networks
    Cao, Hankai
    Liu, Huawei
    Wang, Chaoyi
    IEEE SENSORS JOURNAL, 2024, 24 (20) : 32772 - 32781
  • [5] Convolutional Neural Networks for Apnea Detection from Smartphone Audio Signals: Effect of Window Size
    Castillo-Escario, Yolanda
    Werthen-Brabants, Lorin
    Groenendaal, Willemijn
    Deschrijver, Dirk
    Jane, Raimon
    2022 44TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2022, : 666 - 669
  • [6] Classification of multichannel surface-electromyography signals based on convolutional neural networks
    Duan Na
    Liu Li-Zheng
    Yu Xian-Jia
    Li Qingqing
    Yeh Shih-Ching
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2019, 15 : 201 - 206
  • [7] ESTIMATING THE NDVI FROM SAR BY CONVOLUTIONAL NEURAL NETWORKS
    Mazza, Antonio
    Gargiulo, Massimiliano
    Gaetano, Raffaele
    Scarpa, Giuseppe
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1954 - 1957
  • [8] Estimating Ensemble Location and Width in Binaural Recordings of Music with Convolutional Neural Networks
    Antoniuk, Pawel
    Zielinski, Slawomir K.
    ARCHIVES OF ACOUSTICS, 2025, 50 (01) : 81 - 93
  • [9] Audio Signals Encoding for Cough Classification Using Convolutional Neural Networks: A Comparative Study
    Wang, Hui-Hui
    Liu, Jia-Ming
    You, Mingyu
    Li, Guo-Zheng
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 442 - 445
  • [10] BANDWIDTH EXTENSION OF MUSICAL AUDIO SIGNALS WITH NO SIDE INFORMATION USING DILATED CONVOLUTIONAL NEURAL NETWORKS
    Lagrange, Mathieu
    Gontier, Felix
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 801 - 805