A prediction and interpretation machine learning framework of mortality risk among severe infection patients with pseudomonas aeruginosa

被引:0
|
作者
Cui, Chen [1 ]
Mu, Fei [1 ]
Tang, Meng [1 ]
Lin, Rui [1 ]
Wang, Mingming [1 ]
Zhao, Xian [1 ]
Guan, Yue [1 ]
Wang, Jingwen [1 ]
机构
[1] Fourth Mil Med Univ, Xijing Hosp, Dept Pharm, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
machine learning; interpretation; stratification analysis; Pseudomonas aeruginosa; severe infection; risk factors;
D O I
10.3389/fmed.2022.942356
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Pseudomonas aeruginosa is a ubiquitous opportunistic bacterial pathogen, which is a leading cause of nosocomial pneumonia. Early identification of the risk factors is urgently needed for severe infection patients with P. aeruginosa. However, no detailed relevant investigation based on machine learning has been reported, and little research has focused on exploring relationships between key risk clinical variables and clinical outcome of patients. In this study, we collected 571 severe infections with P. aeruginosa patients admitted to the Xijing Hospital of the Fourth Military Medical University from January 2010 to July 2021. Basic clinical information, clinical signs and symptoms, laboratory indicators, bacterial culture, and drug related were recorded. Machine learning algorithm of XGBoost was applied to build a model for predicting mortality risk of P. aeruginosa infection in severe patients. The performance of XGBoost model (AUROC = 0.94 +/- 0.01, AUPRC = 0.94 +/- 0.03) was greater than the performance of support vector machine (AUROC = 0.90 +/- 0.03, AUPRC = 0.91 +/- 0.02) and random forest (AUROC = 0.93 +/- 0.03, AUPRC = 0.89 +/- 0.04). This study also aimed to interpret the model and to explore the impact of clinical variables. The interpretation analysis highlighted the effects of age, high-alert drugs, and the number of drug varieties. Further stratification clarified the necessity of different treatment for severe infection for different populations.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Early prediction of mortality risk among patients with severe COVID-19, using machine learning
    Hu, Chuanyu
    Liu, Zhenqiu
    Jiang, Yanfeng
    Shi, Oumin
    Zhang, Xin
    Xu, Kelin
    Suo, Chen
    Wang, Qin
    Song, Yujing
    Yu, Kangkang
    Mao, Xianhua
    Wu, Xuefu
    Wu, Mingshan
    Shi, Tingting
    Jiang, Wei
    Mu, Lina
    Tully, Damien C.
    Xu, Lei
    Jin, Li
    Li, Shusheng
    Tao, Xuejin
    Zhang, Tiejun
    Chen, Xingdong
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2020, 49 (06) : 1918 - 1929
  • [2] Machine Learning for Risk Factor Identification and Cardiovascular Mortality Prediction Among Patients with Osteoporosis
    Hasheminasab, Seyed Alireza
    Prieto-Alhambra, Daniel
    Moncusi, Marta Pineda
    Khalid, Sara
    [J]. 2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [3] Clinical predictors of mortality in patients with pseudomonas aeruginosa infection
    Frem, Jim Abi S.
    Doumat, George G.
    Kazma, Jamil M.
    Gharamti, Amal A.
    Kanj, Souha S. M.
    Abou Fayad, Antoine G. M.
    Matar, Ghassan M. M.
    Kanafani, Zeina A. M.
    [J]. PLOS ONE, 2023, 18 (04):
  • [4] Risk factors for mortality among patients with Pseudomonas aeruginosa bacteraemia: a retrospective multicentre study
    Babich, Tanya
    Naucler, Pontus
    Valik, John Karlsson
    Giske, Christian G.
    Benito, Natividad
    Cardona, Ruben
    Rivera, Alba
    Pulcini, Celine
    Fattah, Manal Abdel
    Haquin, Justine
    MacGowan, Alasdair
    Grier, Sally
    Chazan, Bibiana
    Yanovskay, Anna
    Ben Ami, Ronen
    Landes, Michal
    Nesher, Lior
    Zaidman-Shimshovitz, Adi
    McCarthy, Kate
    Paterson, David L.
    Tacconelli, Evelina
    Buhl, Michael
    Maurer, Susanna
    Rodriguez-Bano, Jesus
    Morales, Isabel
    Oliver, Antonio
    Ruiz de Gopegui, Enrique
    Cano, Angela
    Machuca, Isabel
    Gozalo-Marguello, Monica
    Martinez-Martinez, Luis
    Gonzalez-Barbera, Eva M.
    Gomez Alfaro, Iris
    Salavert, Miguel
    Beovic, Bojana
    Saje, Andreja
    Mueller-Premru, Manica
    Pagani, Leonardo
    Vitrat, Virginie
    Kofteridis, Diamantis
    Zacharioudaki, Maria
    Maraki, Sofia
    Weissman, Yulia
    Paul, Mical
    Dickstein, Yaakov
    Leibovici, Leonard
    Yahav, Dafna
    [J]. INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2020, 55 (02)
  • [5] Machine learning to predict mortality after rehabilitation among patients with severe stroke
    Domenico Scrutinio
    Carlo Ricciardi
    Leandro Donisi
    Ernesto Losavio
    Petronilla Battista
    Pietro Guida
    Mario Cesarelli
    Gaetano Pagano
    Giovanni D’Addio
    [J]. Scientific Reports, 10
  • [6] Machine learning to predict mortality after rehabilitation among patients with severe stroke
    Scrutinio, Domenico
    Ricciardi, Carlo
    Donisi, Leandro
    Losavio, Ernesto
    Battista, Petronilla
    Guida, Pietro
    Cesarelli, Mario
    Pagano, Gaetano
    D'Addio, Giovanni
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [7] Risk factors for antimicrobial resistance and influence of resistance on mortality in patients with bloodstream infection caused by Pseudomonas aeruginosa
    Kang, CI
    Kim, SH
    Park, WB
    Lee, KD
    Kim, HB
    Kim, EC
    Oh, MD
    Choe, KW
    [J]. MICROBIAL DRUG RESISTANCE, 2005, 11 (01) : 68 - 74
  • [8] Bacteremia complicating urinary tract infection by Pseudomonas aeruginosa: Mortality risk factors
    Kitagawa, Koichi
    Shigemura, Katsumi
    Yamamichi, Fukashi
    Osawa, Kayo
    Uda, Atsushi
    Koike, Chihiro
    Tokimatsu, Issei
    Shirakawa, Toshiro
    Miyara, Takayuki
    Fujisawa, Masato
    [J]. INTERNATIONAL JOURNAL OF UROLOGY, 2019, 26 (03) : 358 - 362
  • [9] Cross-infection with Pseudomonas aeruginosa among patients with cystic fibrosis
    Agarwal, Gunjan
    Kapil, Arti
    Kabra, Susheel Kumar
    Das, Bimal Kumar
    [J]. NATIONAL MEDICAL JOURNAL OF INDIA, 2006, 19 (04): : 236 - 237
  • [10] PREVALENCE OF PSEUDOMONAS-AERUGINOSA INFECTION AMONG PATIENTS WITH MAXILLARY SINUSITIS
    UMENAI, T
    KANEKO, Y
    KAWAMOTO, K
    [J]. TOHOKU JOURNAL OF EXPERIMENTAL MEDICINE, 1980, 130 (01): : 103 - 104