A Hybrid Biased Random Key Genetic Algorithm for a Production and Cutting Problem

被引:3
|
作者
Goncalves, Jose Fernando [1 ]
机构
[1] Univ Porto, Fac Econ, INESC TEC, LIAAD, Rua Campo Alegre 823, P-4100 Oporto, Portugal
来源
IFAC PAPERSONLINE | 2015年 / 48卷 / 03期
关键词
Biased random-key genetic algorithm; Cutting pattern; Cutting problem; Sequential heuristic procedure; random-keys; PACKING PROBLEMS;
D O I
10.1016/j.ifacol.2015.06.130
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with a very common problem in the home-textile industry. Given a set of orders of small rectangles of fabric the problem consists of determining the lengths and widths of a set of large rectangles of fabric to be produced and the corresponding cutting patterns. The objective is to minimize the total quantity of fabric necessary to satisfy all orders. The approach proposed uses a biased random-key genetic algorithm for generating sets of cutting patterns which are the input to a sequential heuristic procedure which generates a solution. Experimental tests based on a set of 100 random generated problems with known optimal solution validate quality of the approach. (C) 2013, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved,
引用
收藏
页码:496 / 500
页数:5
相关论文
共 50 条
  • [1] A Hybrid Biased Random Key Genetic Algorithm for the Quadratic Assignment Problem
    Lalla-Ruiz, Eduardo
    Exposito-Izquierdo, Christopher
    Melian-Batista, Belen
    Marcos Moreno-Vega, J.
    INFORMATION PROCESSING LETTERS, 2016, 116 (08) : 513 - 520
  • [2] A hybrid biased random key genetic algorithm approach for the unit commitment problem
    Roque, L. A. C.
    Fontes, D. B. M. M.
    Fontes, F. A. C. C.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (01) : 140 - 166
  • [3] A hybrid biased random key genetic algorithm approach for the unit commitment problem
    L. A. C. Roque
    D. B. M. M. Fontes
    F. A. C. C. Fontes
    Journal of Combinatorial Optimization, 2014, 28 : 140 - 166
  • [4] A Biased Random Key Genetic Algorithm Approach for Unit Commitment Problem
    Roque, Luis A. C.
    Fontes, Dalila B. M. M.
    Fontes, Fernando A. C. C.
    EXPERIMENTAL ALGORITHMS, 2011, 6630 : 327 - +
  • [5] A biased random key genetic algorithm for the field technician scheduling problem
    Damm, Ricardo B.
    Resende, Mauricio G. C.
    Ronconi, Debora P.
    COMPUTERS & OPERATIONS RESEARCH, 2016, 75 : 49 - 63
  • [6] Biased random key genetic algorithm for the Tactical Berth Allocation Problem
    Lalla-Ruiz, Eduardo
    Luis Gonzalez-Velarde, Jose
    Melian-Batista, Belen
    Marcos Moreno-Vega, J.
    APPLIED SOFT COMPUTING, 2014, 22 : 60 - 76
  • [7] A biased random-key genetic algorithm for the set orienteering problem
    Carrabs, Francesco
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 292 (03) : 830 - 854
  • [8] A Biased Random Key Genetic Algorithm for the Weighted Independent Domination Problem
    Rodriguez Corominas, Guillem
    Blum, Christian
    Blesa, Maria J.
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 2052 - 2055
  • [9] A BIASED RANDOM KEY GENETIC ALGORITHM APPROACH FOR UNIT COMMITMENT PROBLEM
    Roque, Luis A. C.
    Fontes, Dalila B. M. M.
    Fontes, Fernando A. C. C.
    ICEC 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION, 2010, : 332 - 339
  • [10] A biased random key genetic algorithm for the protein–ligand docking problem
    Pablo Felipe Leonhart
    Eduardo Spieler
    Rodrigo Ligabue-Braun
    Marcio Dorn
    Soft Computing, 2019, 23 : 4155 - 4176