Werner syndrome protein interacts functionally with translesion DNA polymerases

被引:48
|
作者
Kamath-Loeb, Ashwini S. [1 ]
Lan, Li
Nakajima, Satoshi
Yasui, Akira
Loeb, Lawrence A.
机构
[1] Univ Washington, Dept Pathol, Gottstein Mem Canc Res Ctr, Seattle, WA 98195 USA
[2] Tohoku Univ, Inst Dev Aging & Canc, Dept Mol Genet, Aoba Ku, Sendai, Miyagi 988575, Japan
关键词
DNA damage; mutagenesis;
D O I
10.1073/pnas.0702513104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Werner syndrome (WS) is characterized by premature onset of age-associated disorders and predisposition to cancer. The WS protein, WRN, encodes 3' --> 5' DNA helicase and 3' --> 5' DNA exonuclease activities, and is implicated in the maintenance of genomic stability. Translesion (TLS) DNA polymerases (Pols) insert nucleotides opposite replication-blocking DNA lesions and presumably prevent replication fork stalling/collapse. Here, we present in vitro and in vivo data that demonstrate functional interaction between WRN and the TLS Pols, Pol eta, Pol kappa, and Pol iota. In vitro, WRN stimulates the extension activity of TLS Pols on lesion-free and lesion-containing DNA templates, and alleviates pausing at stalling lesions. Stimulation is mediated through an increase in the apparent V-max of the polymerization reaction. Notably, by accelerating the rate of nucleotide incorporation, WRN increases mutagenesis by Pol eta. In vivo, WRN and Pol eta colocalize at replication-dependent foci in response to UVC irradiation. The functional interaction between WRN and TLS Pols may promote replication fork progression, at the expense of increased mutagenesis, and obviate the need to resolve stalled/collapsed forks by processes involving chromosomal rearrangements.
引用
收藏
页码:10394 / 10399
页数:6
相关论文
共 50 条
  • [1] Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis
    Guo, CX
    Fischhaber, PL
    Luk-Paszyc, MJ
    Masuda, Y
    Zhou, J
    Kamiya, K
    Kisker, C
    Friedberg, EC
    EMBO JOURNAL, 2003, 22 (24): : 6621 - 6630
  • [2] Translesion DNA Polymerases
    Goodman, Myron F.
    Woodgate, Roger
    COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2013, 5 (10):
  • [3] Transcriptional Modulator NusA Interacts with Translesion DNA Polymerases in Escherichia coli
    Cohen, Susan E.
    Godoy, Veronica G.
    Walker, Graham C.
    JOURNAL OF BACTERIOLOGY, 2009, 191 (02) : 665 - 672
  • [4] Translesion DNA polymerases
    Yamada, A
    Masutani, C
    Hanaoka, F
    SEIKAGAKU, 2000, 72 (03): : 187 - 190
  • [5] A novel protein interacts with the Werner's syndrome gene product physically and functionally
    Kawabe, Y
    Branzei, D
    Hayashi, T
    Suzuki, H
    Masuko, T
    Onoda, F
    Heo, SJ
    Ikeda, H
    Shimamoto, A
    Furuichi, Y
    Seki, M
    Enomoto, T
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (23) : 20364 - 20369
  • [6] The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome
    Trego, Kelly S.
    Chernikova, Sophia B.
    Davalos, Albert R.
    Perry, J. Jefferson P.
    Finger, L. David
    Ng, Cliff
    Tsai, Miaw-Sheue
    Yannone, Steven M.
    Tainer, John A.
    Campisi, Judith
    Cooper, Priscilla K.
    CELL CYCLE, 2011, 10 (12) : 1998 - 2007
  • [7] Plant organellar DNA polymerases are replicative and translesion DNA synthesis polymerases
    Baruch-Torres, Noe
    Brieba, Luis G.
    NUCLEIC ACIDS RESEARCH, 2017, 45 (18) : 10751 - 10763
  • [8] Control and Function of Translesion DNA Polymerases
    Walker, Graham C.
    Cohen, Susan E.
    Jarosz, Daniel F.
    Foti, James J.
    FASEB JOURNAL, 2010, 24
  • [9] Stalling of Eukaryotic Translesion DNA Polymerases at DNA-Protein Cross-Links
    Yudkina, Anna V.
    Shilkin, Evgeniy S.
    Makarova, Alena V.
    Zharkov, Dmitry O.
    GENES, 2022, 13 (02)
  • [10] Function and Control of Translesion DNA Polymerases.
    Foti, J. J.
    Devadoss, B.
    Xie, K.
    D' Souza, S.
    Minesinger, B.
    Winkler, J.
    Doles, J.
    Hemann, M. T.
    Collins, J. J.
    Walker, G. C.
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2011, 52 : S31 - S31