Properties of noncentral Dirichlet distributions

被引:6
|
作者
Sanchez, L. E.
Nagar, D. K.
Gupta, A. K.
机构
[1] Univ Antioquia, Dept Matemat, Medellin, Colombia
[2] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
关键词
asymptotic; confluent hypergeometric function; beta distribution; Dirichlet distribution; noncentral; transformation;
D O I
10.1016/j.camwa.2006.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X-1,..., Xr+1 be independent random variables, X-i similar to Ga (a(i), theta, delta(i)), i= 1,...,r+1. Define U-i = X-i/Sigma(r+1)(i=1), i = 1,...,r and V-i = X-i/Xr+1, i = 1,...,r. Then, (U-1,...,U-r) and (V-1,...,V-r) follow noncentral Dirichlet Type 1 and Type 2 distributions, respectively. In this article several properties of these distributions and their connections with the uniform, the noncentral multivariate-F and the noncentral multivariate-t distributions are discussed. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1671 / 1682
页数:12
相关论文
共 50 条