On the diophantine equation x2-2m=±yn

被引:2
|
作者
Bugeaud, Y [1 ]
机构
[1] Univ Strasbourg 1, UFR Math, F-67084 Strasbourg, France
关键词
exponential equations; linear forms in logarithms;
D O I
10.1090/S0002-9939-97-04093-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of the purposes of this note is to correct the proof of a recent result of Y. Guo & M. Le on the equation x(2) - 2(m) = y(n). Moreover, we prove that the diophantine equation x(2) - 2(m) = +/- y(n), x, y, m, n is an element of N, gcd(x, y) = 1, y > 1, n > 2 has only finitely many solutions, all of which satisfying n less than or equal to 7.310(5).
引用
收藏
页码:3203 / 3208
页数:6
相关论文
共 50 条