Efficiency enhancement in InAs/GaAsSb quantum dot solar cells with GaP strain compensation layer

被引:5
|
作者
Kim, Yeongho [1 ]
Ban, Keun-Yong [2 ,3 ]
Zhang, Chaomin [2 ]
Kim, Jun Oh [1 ]
Lee, Sang Jun [1 ]
Honsberg, Christiana B. [2 ]
机构
[1] Korea Res Inst Stand & Sci, Div Ind Metrol, Daejeon 305340, South Korea
[2] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[3] Appl Mat Inc, Santa Clara, CA 95054 USA
基金
美国国家科学基金会;
关键词
MU-M; DISLOCATIONS;
D O I
10.1063/1.4943182
中图分类号
O59 [应用物理学];
学科分类号
摘要
The structural characteristics and device performance of strain-compensated InAs/GaAsSb quantum dot solar cells (QDSCs) with different GaP coverages have been studied. The in-plane (out-of-plane) compressive strain of the QD stacks is reduced from -1.24 (+1.06) to -0.39 (+0.33)% by increasing the GaP coverage from 0 to 4 ML. This strain compensation decreases strain-induced dislocation density and hence enhances the overall crystal quality of the QDSCs. The external quantum efficiency spectra reveal that the increase in the GaP coverage increases the photocurrent from wavelengths shorter than GaAs bandedge of 880 nm, while it decreases the photocurrent from near infrared wavelengths beyond the bandedge. The conversion efficiency of the QDSCs is significantly improved from 7.22 to 9.67% as the GaP coverage is increased from 0 to 4 ML. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] InAs/GaAsSb quantum dot solar cells
    Hatch, Sabina
    Wu, Jiang
    Sablon, Kimberly
    Phu Lam
    Tang, Mingchu
    Jiang, Qi
    Liu, Huiyun
    OPTICS EXPRESS, 2014, 22 (09): : A679 - A685
  • [2] Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers
    Laghumavarapu, R. B.
    El-Emawy, M.
    Nuntawong, N.
    Moscho, A.
    Lester, L. F.
    Huffaker, D. L.
    APPLIED PHYSICS LETTERS, 2007, 91 (24)
  • [3] INAS QUANTUM DOT ENHANCEMENT OF GAAS SOLAR CELLS
    Hubbard, Seth M.
    Plourde, Chelsea
    Bittner, Zac
    Bailey, Christopher G.
    Harris, Mike
    Bald, Tim
    Bennett, Mitch
    Forbes, David V.
    Raffaelle, Ryne
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010,
  • [4] Type-II InAs/GaAsSb Quantum Dot Solar Cells With GaAs Interlayer
    Kim, Dongyoung
    Hatch, Sabina
    Wu, Jiang
    Sablon, Kimberly A.
    Lam, Phu
    Jurczak, Pamela
    Tang, Mingchu
    Gillin, William P.
    Liu, Huiyun
    IEEE JOURNAL OF PHOTOVOLTAICS, 2018, 8 (03): : 741 - 745
  • [5] GROWTH OF InAs QUANTUM DOTS ON GaAsSb FOR THE REALIZATION OF A QUANTUM DOT SOLAR CELL
    Bremner, S. P.
    Pancholi, A.
    Ghosh, K.
    Dahal, S.
    Liu, G. M.
    Ban, K. Y.
    Levy, M. Y.
    Honsberg, C. B.
    PVSC: 2008 33RD IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-4, 2008, : 1007 - 1012
  • [6] Role of segregation in InAs/GaAs quantum dot structures capped with a GaAsSb strain-reduction layer
    Haxha, V.
    Drouzas, I.
    Ulloa, J. M.
    Bozkurt, M.
    Koenraad, P. M.
    Mowbray, D. J.
    Liu, H. Y.
    Steer, M. J.
    Hopkinson, M.
    Migliorato, M. A.
    PHYSICAL REVIEW B, 2009, 80 (16):
  • [7] Thin GaAsSb capping layers for improved performance of InAs/GaAs quantum dot solar cells
    Utrilla, A. D.
    Reyes, D. F.
    Llorens, J. M.
    Artacho, I.
    Ben, T.
    Gonzalez, D.
    Gacevic, Z.
    Kurtz, A.
    Guzman, A.
    Hierro, A.
    Ulloa, J. M.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 159 : 282 - 289
  • [8] Material and device characteristics of InAs/GaAsSb sub-monolayer quantum dot solar cells
    Kim, Yeongho
    Ban, Keun-Yong
    Zhang, Chaomin
    Honsberg, Christiana B.
    APPLIED PHYSICS LETTERS, 2015, 107 (15)
  • [9] Effect of space layer doping on photoelectric conversion efficiency of InAs/GaAs quantum dot solar cells
    Lee, Kyoung Su
    Lee, Dong Uk
    Kim, Eun Kyu
    Choi, Won Jun
    APPLIED PHYSICS LETTERS, 2015, 107 (20)
  • [10] InAs/GaAs QUANTUM DOTS COVERED BY GaAsSb STRAIN REDUCING LAYER
    Zikova, Marketa
    Kubistova, Jana
    Hospodkova, Alice
    Pangrac, Jiri
    Oswald, Jiri
    Jiricek, Petr
    NANOCON 2012, 4TH INTERNATIONAL CONFERENCE, 2012, : 204 - 208