Combining multiple clustering systems

被引:0
|
作者
Boulis, C [1 ]
Ostendorf, M [1 ]
机构
[1] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Three methods for combining multiple clustering systems are presented and evaluated, focusing on the problem of finding the correspondence between clusters of different systems. In this work, the clusters of individual systems are represented in a common space and their correspondence estimated by either "clustering clusters" or with Singular Value Decomposition. The approaches are evaluated for the task of topic discovery on three major corpora and eight different clustering algorithms and it is shown experimentally that combination schemes almost always offer gains compared to single systems, but gains from using a combination scheme depend on the underlying clustering systems.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 50 条
  • [1] Combining Multiple Interrelated Streams for Incremental Clustering
    Siddiqui, Zaigham Faraz
    Spiliopoulou, Myra
    SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, PROCEEDINGS, 2009, 5566 : 535 - 552
  • [2] Multiple clustering and selecting algorithms with combining strategy for selective clustering ensemble
    Tinghuai Ma
    Te Yu
    Xiuge Wu
    Jie Cao
    Alia Al-Abdulkarim
    Abdullah Al-Dhelaan
    Mohammed Al-Dhelaan
    Soft Computing, 2020, 24 : 15129 - 15141
  • [3] Multiple clustering and selecting algorithms with combining strategy for selective clustering ensemble
    Ma, Tinghuai
    Yu, Te
    Wu, Xiuge
    Cao, Jie
    Al-Abdulkarim, Alia
    Al-Dhelaan, Abdullah
    Al-Dhelaan, Mohammed
    SOFT COMPUTING, 2020, 24 (20) : 15129 - 15141
  • [4] Salient Object Detection by Combining Multiple Color Clustering
    Oh, Kang Han
    Kim, Soo Hyung
    Kim, Young Chul
    ACM IMCOM 2015, PROCEEDINGS, 2015,
  • [5] Combining Multiple Features for Web Data Sources Clustering
    Algergawy, Alsayed
    Saake, Gunter
    2013 IEEE 10TH INTERNATIONAL CONFERENCE ON E-BUSINESS ENGINEERING (ICEBE), 2013, : 213 - 218
  • [6] Combining multiple classifications of chemical structures using consensus clustering
    Chu, Chia-Wei
    Holliday, John D.
    Willett, Peter
    BIOORGANIC & MEDICINAL CHEMISTRY, 2012, 20 (18) : 5366 - 5371
  • [7] Hybrid Combining Design for User Clustering in mmWave MIMO Systems
    Perez-Adan, Darian
    Fresnedo, Oscar
    Gonzalez-Coma, Jose P.
    Castedo, Luis
    2020 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2020, : 254 - 259
  • [8] Combining multiple autonomous mobile sensor behaviors using local clustering
    Stolkin, Rustam
    Nickerson, Jeffrey V.
    MILCOM 2005 - 2005 IEEE MILITARY COMMUNICATIONS CONFERENCE, VOLS 1-5, 2005, : 576 - 582
  • [9] ExtMiner:: Combining multiple ranking and clustering algorithms for structured document retrieval
    Nurminen, M
    Honkaranta, A
    Kärkkäinen, T
    SIXTEENTH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2005, : 1036 - 1040
  • [10] Using Soft Consensus Clustering for Combining Multiple Clusterings of Chemical Structures
    Saeed, Faisal
    Salim, Naomie
    JURNAL TEKNOLOGI, 2013, 63 (01):