RADIO-FREQUENCY INTERFERENCE LOCATION, DETECTION AND CLASSIFICATION USING DEEP NEURAL NETWORKS

被引:6
|
作者
Perez, A. [1 ,2 ]
Querol, J. [3 ]
Park, H. [1 ,2 ]
Camps, A. [1 ,2 ]
机构
[1] Univ Politecn Catalunya BarcelonaTech, CommSensLab UPC, Barcelona, Spain
[2] IEEC CTE UPC, Barcelona, Spain
[3] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust SnT, Luxembourg, Luxembourg
关键词
RFI; jamming; GNSS; GNSS-R; detection; mitigation;
D O I
10.1109/IGARSS39084.2020.9324532
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Global Navigation Satellite System (GNSS) signals are used in Earth Observation for Radio Occultation and Reflectometry. The increasing effects of Radio-Frequency Interferences (RFI) on the performance of these receivers and navigation have suddenly sparked serious concerns due to their proliferation. Detection and mitigation of RFI heavily relies on the nature and location of the interfering sources. In some cases, null-steering or shielding can be used to mitigate RFI effects. In this work, a system to detect and locate RFI sources is presented, including signal classification and recording for countermeasure-related decision-making.
引用
收藏
页码:6977 / 6980
页数:4
相关论文
共 50 条
  • [1] Radio frequency interference mitigation using deep convolutional neural networks
    Akeret, J.
    Chang, C.
    Lucchi, A.
    Refregier, A.
    ASTRONOMY AND COMPUTING, 2017, 18 : 35 - 39
  • [2] Interference Classification Using Deep Neural Networks
    Yu, Jianyuan
    Alhassoun, Mohammad
    Buehrer, R. Michael
    2020 IEEE 92ND VEHICULAR TECHNOLOGY CONFERENCE (VTC2020-FALL), 2020,
  • [3] Radio Frequency Classification and Anomaly Detection using Convolutional Neural Networks
    Conn, Marvin A.
    Josyula, Darsana
    2019 IEEE RADAR CONFERENCE (RADARCONF), 2019,
  • [4] Radio Frequency Interference Detection for SMAP Radiometer Using Convolutional Neural Networks
    Alam, Ahmed Manavi
    Kurum, Mehmet
    Gurbuz, Ali C.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 10099 - 10112
  • [5] Detection of Radio-Frequency Interference for the Aquarius Radiometer
    Misra, Sidharth
    Ruf, Christopher S.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (10): : 3123 - 3128
  • [6] Anomaly Detection and Radio-frequency Interference Classification with Unsupervised Learning in Narrowband Radio Technosignature Searches
    Jacobson-Bell, Ben
    Croft, Steve
    Choza, Carmen
    Andersson, Alex
    Bautista, Daniel
    Gajjar, Vishal
    Lebofsky, Matthew
    Macmahon, David H. E.
    Painter, Caleb
    Siemion, Andrew P. V.
    ASTRONOMICAL JOURNAL, 2025, 169 (04):
  • [7] Breast lesion classification based on ultrasonic radio-frequency signals using convolutional neural networks
    Jarosik, Piotr
    Klimonda, Ziemowit
    Lewandowski, Marcin
    Byra, Michal
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (03) : 977 - 986
  • [8] RADIO-FREQUENCY INTERFERENCE
    SHOUP, D
    INSTRUMENTS & CONTROL SYSTEMS, 1974, 47 (07): : 63 - 66
  • [9] RADIO-FREQUENCY INTERFERENCE
    POTTGEN, JD
    BYTE, 1982, 7 (03): : 445 - 445
  • [10] DETECTION OF RADIO-FREQUENCY INTERFERENCE IN MICROWAVE RADIOMETERS USING SPECTRAL KURTOSIS
    Sobjaerg, Sten Schmidl
    Svoboda, Jan
    Balling, Jan E.
    Skou, Niels
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7141 - 7144