Spatial resolution in transmission electron microscopy

被引:25
|
作者
Egerton, R. F. [1 ]
Watanabe, M. [2 ]
机构
[1] Univ Alberta, Phys Dept, Edmonton, AB T6G 2E1, Canada
[2] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Resolution; Image contrast; Point-spread function; TEM; STEM; SECONDARY ELECTRONS; RADIATION-DAMAGE; SINGLE; MICROANALYSIS; ABERRATIONS; SCATTERING; SPECIMENS; EQUATION; LIMITS; SIZE;
D O I
10.1016/j.micron.2022.103304
中图分类号
TH742 [显微镜];
学科分类号
摘要
We review the practical factors that determine the spatial resolution of transmission electron microscopy (TEM) and scanning-transmission electron microscopy (STEM), then enumerate the advantages of representing resolution in terms of a point-spread function. PSFs are given for the major resolution-limiting factors: aperture diffraction, spherical and chromatic aberration, beam divergence, beam broadening, Coulomb delocalization, radiolysis damage and secondary-electron generation from adatoms or atoms in a matrix. We note various definitions of beam broadening, complications of describing this effect in very thin specimens, and ways of optimizing the resolution in bright-field STEM of thick samples. Beam spreading in amorphous and crystalline materials is compared by means of simulations. For beam-sensitive specimens, we emphasize the importance of dose-limited resolution (DLR) and briefly recognize efforts to overcome the fundamental resolution limits set by the wave and particle properties of electrons.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Spatial resolution and information transfer in scanning transmission electron microscopy
    Peng, Yiping
    Oxley, Mark P.
    Lupini, Andrew R.
    Chisholm, Matthew F.
    Pennycook, Stephen J.
    MICROSCOPY AND MICROANALYSIS, 2008, 14 (01) : 36 - 47
  • [2] Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber
    Nguyen, Kayla X.
    Holtz, Megan E.
    Richmond-Decker, Justin
    Muller, David A.
    MICROSCOPY AND MICROANALYSIS, 2016, 22 (04) : 754 - 767
  • [3] Magnetization imaging at high spatial resolution using transmission electron microscopy
    Daykin, AC
    Jakubovics, JP
    JOURNAL OF APPLIED PHYSICS, 1996, 80 (06) : 3408 - 3411
  • [4] Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy
    Armstrong, Michael R.
    Boyden, Ken
    Browning, Nigel D.
    Campbell, Geoffrey H.
    Colvin, Jeffrey D.
    DeHope, William J.
    Frank, Alan M.
    Gibson, David J.
    Hartemann, Fred
    Kim, Judy S.
    King, Wayne E.
    LaGrange, Thomas B.
    Pyke, Ben J.
    Reed, Bryan W.
    Shuttlesworth, Richard M.
    Stuart, Brent C.
    Torralva, Ben R.
    ULTRAMICROSCOPY, 2007, 107 (4-5) : 356 - 367
  • [5] Characterization of cement alteration process by transmission electron microscopy with high spatial resolution
    Miyamoto, Shinya
    Uehara, Seiichiro
    Sasoh, Michitaka
    Sato, Mitsuyoshi
    Toyohara, Masumitsu
    Idemitsu, Kazuya
    Matsumura, Syo
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2006, 43 (11) : 1370 - 1378
  • [6] On the spatial resolution in analytical electron microscopy
    Armigliato, A
    Howard, DJ
    Balboni, R
    Frabboni, S
    Caymax, MR
    MIKROCHIMICA ACTA, 1998, : 59 - 64
  • [7] Spatial and phase resolution in electron microscopy
    Ishikawa, Ryo
    Morishita, Shigeyuki
    Tanigaki, Toshiaki
    Shibata, Naoya
    Ikuhara, Yuichi
    MICROSCOPY, 2023, 72 (02) : 78 - 96
  • [8] Theory of the spatial resolution of (scanning) transmission electron microscopy in liquid water or ice layers
    de Jonge, Niels
    ULTRAMICROSCOPY, 2018, 187 : 113 - 125
  • [9] ANALYTICAL TRANSMISSION ELECTRON-MICROSCOPY WITH HIGH SPATIAL-RESOLUTION - POSSIBILITIES AND LIMITATIONS
    RUHLE, M
    FRESENIUS ZEITSCHRIFT FUR ANALYTISCHE CHEMIE, 1989, 334 (07): : 614 - 614
  • [10] SOME CONSIDERATIONS OF THE ULTIMATE SPATIAL RESOLUTION ACHIEVABLE IN SCANNING TRANSMISSION ELECTRON MICROSCOPY.
    Garratt-Reed, Anthony J.
    Scanning Electron Microscopy, 1985, (pt 1) : 21 - 29