Facile fabrication of binder-free reduced graphene oxide/MnO2/Ni foam hybrid electrode for high-performance supercapacitors

被引:51
|
作者
Zhao, Zhiyong [1 ]
Shen, Ting [1 ]
Liu, Zhihua [1 ]
Zhong, Qishi [1 ]
Qin, Yujun [1 ]
机构
[1] Renmin Univ China, Dept Chem, Beijing 100872, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
MnO2; Graphene aerogel; Electrochemical deposition; Supercapacitor; Binder-free; ENERGY-STORAGE; ENVIRONMENTAL APPLICATIONS; DOPED GRAPHENE; POROUS CARBON; MNO2; OXIDE; NANOCOMPOSITES; NANOSTRUCTURES; COMPOSITES; NITROGEN;
D O I
10.1016/j.jallcom.2019.152124
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel three-dimensional reduced graphene oxide aerogel and MnO2 (rGO/MnO2) hybrid is prepared via a mild method and freeze-drying treatment, followed by an electrodeposition process. The characterization results reveal that the deposited MnO2 is homogeneously anchored on the graphene sheets, which is served as binder-free electrode material to fabricate high-performance supercapacitor. The specific capacitance of rGO/MnO2 on Ni foam reaches 288 F g(-1) at 0.5 A g(-1). The assembled symmetrical rGO/MnO2/Ni supercapacitor exhibits a maximum energy density of 26.82 Wh kg(-1) and a maximum power density of 8.61 kW kg(-1), whose capacitance retention maintains 94.7% over 1000 cycles. Moreover, it can successfully activate different LEDs after being charged. These appreciable performances are primarily put down to the cooperative effect of porous structure of rGO/MnO2 and pseudocapacitive property of MnO2, which provides adequate electroactive sites and facilitates the electron/ion transfer during the electrochemical processes. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Facile Fabrication of MnO2/Graphene/Ni Foam Composites for High-Performance Supercapacitors
    Liu, Rui
    Jiang, Rui
    Chu, Yu-Han
    Yang, Wein-Duo
    [J]. NANOMATERIALS, 2021, 11 (10)
  • [2] Porous reduced graphene oxide paper as a binder-free electrode for high-performance supercapacitors
    Liu, Yu
    Ying, Yulong
    Mao, Yiyin
    Hua, Pan
    Peng, Xinsheng
    [J]. RSC ADVANCES, 2015, 5 (34) : 27175 - 27180
  • [3] MnO2/reduced graphene oxide composite as high-performance electrode for flexible supercapacitors
    Ye, Kai-Hang
    Liu, Zhao-Qing
    Xu, Chang-Wei
    Li, Nan
    Chen, Yi-Bo
    Su, Yu-Zhi
    [J]. INORGANIC CHEMISTRY COMMUNICATIONS, 2013, 30 : 1 - 4
  • [4] Fabrication of Ni(OH)2 nanoflakes array on Ni foam as a binder-free electrode material for high performance supercapacitors
    Hu, Bingling
    Qin, Xiaoyun
    Asiri, Abdullah M.
    Alamry, Khalid A.
    Al-Youbi, Abdulrahman O.
    Sun, Xuping
    [J]. ELECTROCHIMICA ACTA, 2013, 107 : 339 - 342
  • [5] In Situ Growth of MnO2 Nanosheets on a Graphite Flake as an Effective Binder-Free Electrode for High-Performance Supercapacitors
    Gu, Yuanhang
    Xu, Dong
    Chen, Shaoyun
    You, Feng
    Hu, Chenglong
    Huang, Huabo
    Chen, Jian
    [J]. ACS OMEGA, 2022, 7 (51): : 48320 - 48331
  • [6] Polyphosphate-reduced graphene oxide on Ni foam as a binder free electrode for fabrication of high performance supercapacitor
    Talebi, Majid
    Asen, Parvin
    Shahrokhian, Saeed
    Ahadian, Mohammad Mahdi
    [J]. ELECTROCHIMICA ACTA, 2019, 296 : 130 - 141
  • [7] Ni-Bi-S nanosheets/Ni foam as a binder-free high-performance electrode for asymmetric supercapacitors
    Xiao, Ting
    Chen, Fei
    Zhou, Wenjie
    Che, Pengcheng
    Wang, Shulin
    Chen, Xuelin
    Tan, Xinyu
    Xiang, Peng
    Jiang, Lihua
    Chen, Xiaobo
    [J]. CHEMICAL ENGINEERING JOURNAL, 2019, 378
  • [8] Co(OH)2 nanoflakes grown on 3D graphene foam as a binder-free hybrid electrode for high-performance supercapacitors
    Yin, Tong
    Zhang, Wenkang
    Yin, Yaolong
    Yan, Ya
    Zhan, Ke
    Yang, Junhe
    Zhao, Bin
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (11) : 7884 - 7891
  • [9] Co(OH)2 nanoflakes grown on 3D graphene foam as a binder-free hybrid electrode for high-performance supercapacitors
    Tong Yin
    Wenkang Zhang
    Yaolong Yin
    Ya Yan
    Ke Zhan
    Junhe Yang
    Bin Zhao
    [J]. Journal of Materials Science: Materials in Electronics, 2017, 28 : 7884 - 7891
  • [10] Facile preparation of flexible binder-free graphene electrodes for high-performance supercapacitors
    Lin, Shiqi
    Tang, Jie
    Zhang, Wanli
    Zhang, Kun
    Chen, Youhu
    Gao, Runsheng
    Yin, Hang
    Yu, Xiaoliang
    Qin, Lu-Chang
    [J]. RSC ADVANCES, 2022, 12 (20) : 12590 - 12599