Estimation and optimal designs for linear Haar-wavelet models

被引:7
|
作者
Tian, Yongge
Herzberg, Agnes M.
机构
[1] Shanghai Univ Finance & Econom, Sch Econ, Shanghai 200433, Peoples R China
[2] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
关键词
Haar-wavelet; linear model; best linear unbiased estimator; covariance matrix; information matrix; optimal design;
D O I
10.1007/s00184-006-0078-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper gives an analytical expression for the best linear unbiased estimator (BLUE) of the unknown parameters in the linear Haar-wavelet model. From the analytical expression, we solve for the eigenvalues of the covariance matrix of the BLUE in analytical form. Further, we use these eigenvalues. to construct some conventional discrete optimal designs for the model. The equivalences among these optimal designs are demonstrated and some examples are also given.
引用
收藏
页码:311 / 324
页数:14
相关论文
共 50 条
  • [1] Estimation and optimal designs for linear Haar-wavelet models
    Yongge Tian
    Agnes M. Herzberg
    [J]. Metrika, 2007, 65 : 311 - 324
  • [2] R-optimal Designs for Linear Haar-Wavelet Regression Models
    Chatterjee, Kashinath
    [J]. STATISTICS AND APPLICATIONS, 2021, 19 (01): : 61 - 65
  • [3] ESTIMATIONS AND OPTIMAL DESIGNS FOR TWO-DIMENSIONAL HAAR-WAVELET REGRESSION MODELS
    Tian, Yongge
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2009, 7 (03) : 281 - 297
  • [4] A-minimax and D-minimax robust optimal designs for approximately linear Haar-wavelet models
    Tian, Yongge
    Herzberg, Agnes M.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (10) : 2942 - 2951
  • [5] D-optimal designs for a combined simple linear and Haar-wavelet regression model
    Tian, Yongge
    Herzberg, Agnes M.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (06) : 1085 - 1091
  • [6] Inpainting by Flexible Haar-Wavelet Shrinkage
    Chan, R. H.
    Setzer, S.
    Steidl, G.
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2008, 1 (03): : 273 - 293
  • [7] Robust designs for Haar wavelet approximation models
    Xu, Xiaojian
    Zhao, Lin
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2011, 27 (05) : 531 - 550
  • [8] Haar-wavelet based approximation for pricing American options under linear complementarity formulations
    Kumar, Devendra
    Deswal, Komal
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (02) : 1091 - 1111
  • [9] Object Shape Description Using Haar-Wavelet Functions
    Abou Nabout, Adnan
    Tibken, Bernd
    [J]. 2008 3RD INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES: FROM THEORY TO APPLICATIONS, VOLS 1-5, 2008, : 941 - 946
  • [10] FAST HAAR-WAVELET DENOISING OF MULTIDIMENSIONAL FLUORESCENCE MICROSCOPY DATA
    Luisier, Florian
    Vonesch, Cedric
    Blu, Thierry
    Unser, Michael
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 310 - +