Analysis of starch digestograms using Monte Carlo simulations

被引:4
|
作者
Vernon-Carter, E. J. [1 ]
Meraz, M. [2 ]
Bello-Perez, L. A. [3 ]
Alvarez-Ramirez, J. [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Ingn Proc Hidraul, CDMX, Apartado Postal 55534, Iztapalapa 09340, Mexico
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Biotecnol, CDMX, Apartado Postal 55535, Iztapalapa 09340, Mexico
[3] Inst Politecn Nacl, CEPROBI, Km 6 Carr,Apartado Postal 24, Morelos 62731, Mexico
关键词
Starch digestion; Monte Carlo simulations; Log-of-slope; Biphasic digestion pattern; STOCHASTIC SIMULATION; ALPHA-AMYLASE; RICE STARCH; AMYLOLYSIS; DIGESTION; KINETICS; DIGESTIBILITY; HYDROLYSIS;
D O I
10.1016/j.carbpol.2022.119589
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Monte Carlo dynamics were used to simulate the enzymatic starch digestion. Enzyme and starch molecules were distributed on a periodic grid and allowed to stochastically interact according to the kinetics scheme S + E -> P + E. Digestion of gelatinized dispersions was simulated by assuming limited mobility of starch and complete mobility of enzymes and products. The results showed that the starch conversion kinetics follows the exponential model X(t) = X infinity(1 - exp (- kHt)). On the other hand, the simulation of native granular starch digestion considered non-mobile aggregates of starch molecules hydrolyzed to products by mobile enzyme molecules. The results showed the presence of bi-phasic digestion patterns, which were linked to the transition from a regular to an irregular (fractal-like) granule morphology as a consequence of the erosion of the granule surface by the enzyme action. The simulation results were contrasted qualitatively with experimental results for gelatinized and granular starch digestion.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Analysis of random magnetization switching using Monte Carlo simulations
    Lee, A.
    Liu, Z.
    Bertotti, G.
    Serpico, C.
    Mayergoyz, I.
    [J]. PHYSICA B-CONDENSED MATTER, 2014, 435 : 100 - 104
  • [2] Transient analysis of CML inverter using Monte Carlo simulations
    Galdin, S
    Musalem, FX
    Dollfus, P
    Mouis, M
    Hesto, P
    [J]. SOLID-STATE ELECTRONICS, 1996, 39 (02) : 269 - 275
  • [3] Scatter analysis of the ClearPET™ neuro using Monte Carlo simulations
    Fulterer, Anna M.
    Schneider, Stephan
    Gundlich, Brigitte
    Musmann, Patrick
    Weber, Simone
    Buzug, Thorsten M.
    [J]. ADVANCES IN MEDICAL ENGINEERING, 2007, 114 : 109 - +
  • [4] Acceleration of Proton Monte Carlo Simulations Using the Macro Monte Carlo Method
    Jacqmin, D.
    [J]. MEDICAL PHYSICS, 2012, 39 (06) : 3945 - 3945
  • [5] Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations
    Kamran, Faisal
    Andersen, Peter E.
    [J]. APPLIED OPTICS, 2015, 54 (23) : 7099 - 7105
  • [6] Introducing Monte Carlo simulations using Mathcad
    Spence, TG
    Sass, LE
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U546 - U546
  • [7] Tool for Rapid Analysis of Monte Carlo Simulations
    Restrepo, Carolina I.
    Hurtado, John E.
    [J]. JOURNAL OF SPACECRAFT AND ROCKETS, 2014, 51 (05) : 1564 - 1575
  • [8] Data analysis for quantum Monte Carlo simulations
    Neuber, DR
    Fischer, RO
    von der Linden, W
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2004, 735 : 245 - 251
  • [9] Monte Carlo Simulations in Real Options Analysis
    Spicar, Radim
    [J]. VISION 2020: SUSTAINABLE GROWTH, ECONOMIC DEVELOPMENT, AND GLOBAL COMPETITIVENESS, VOLS 1-5, 2014, : 2130 - 2139
  • [10] Acceleration of Optical Photon Monte Carlo Simulations Using the Macro Monte Carlo Method
    Jacqmin, D.
    [J]. MEDICAL PHYSICS, 2012, 39 (06) : 3623 - 3623