Temperature-compensated high-stability silicon resonators

被引:96
|
作者
Melamud, Renata [1 ]
Kim, Bongsang
Chandorkar, Saurabh A.
Hopcroft, Matthew A.
Agarwal, Manu
Jha, Chandra M.
Kenny, Thomas W.
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2748092
中图分类号
O59 [应用物理学];
学科分类号
摘要
Composite micromechanical resonators were encapsulated in a hermetic environment using a wafer-scale encapsulation process compatible with complementary metal-oxide semiconductor processing. The resonator structure is comprised of single crystal silicon with a silicon dioxide coating and shows a frequency-temperature sensitivity that is comparable to uncompensated quartz crystal resonators. A frequency variation of less than 200 ppm is achieved over a -40-125 degrees C temperature range. The resonator exhibits a quadratic temperature behavior with a turnover temperature at which the frequency becomes insensitive to small temperature changes. The turnover temperature can be controlled for use in high precision frequency references. (c) 2007 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Piezoelectrically Transduced Temperature-Compensated Flexural-Mode Silicon Resonators
    Thakar, Vikram A.
    Wu, Zhengzheng
    Peczalski, Adam
    Rais-Zadeh, Mina
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2013, 22 (03) : 815 - 823
  • [2] Temperature-compensated silicon photomultiplier
    Kuznetsov, Evgeny
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 912 : 226 - 230
  • [3] TUNABLE, TEMPERATURE-COMPENSATED DIELECTRIC RESONATORS AND FILTERS
    CHEN, SW
    ZAKI, KA
    WEST, RG
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1990, 38 (08) : 1046 - 1052
  • [4] Technology Introduction and Future Prospects of Piezoelectrically Transduced Temperature-compensated Silicon MEMS Resonators
    Jaakkola A.
    Koppinen P.
    Journal of the Institute of Electrical Engineers of Japan, 2024, 144 (02): : 72 - 75
  • [5] Design and testing of SMA temperature-compensated cavity resonators
    Keats, BF
    Gorbet, RB
    Mansour, RR
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003, 51 (12) : 2284 - 2289
  • [6] Temperature-Compensated Aluminum Nitride Lamb Wave Resonators
    Lin, Chih-Ming
    Yen, Ting-Ta
    Lai, Yun-Ju
    Felmetsger, Valery V.
    Hopcroft, Matthew A.
    Kuypers, Jan H.
    Pisano, Albert P.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2010, 57 (03) : 524 - 532
  • [7] Temperature-Compensated CMOS-MEMS Oxide Resonators
    Liu, Yu-Chia
    Tsai, Ming-Han
    Chen, Wen-Chien
    Li, Ming-Huang
    Li, Sheng-Shian
    Fang, Weileun
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2013, 22 (05) : 1054 - 1065
  • [8] HIGH-STABILITY QUARTZ RESONATORS
    YAROSLAVSKII, MI
    SOROKIN, KV
    LAVROVA, TP
    KARAULNIK, AE
    PETROZHITSKAYA, IN
    MOTIN, PE
    SHIN, V
    EFREMOV, ON
    LYUBIMOV, LA
    MEASUREMENT TECHNIQUES, 1977, 20 (08) : 1175 - 1177
  • [9] DIMENSIONING OF TEMPERATURE-COMPENSATED SILICON PRESSURE GAUGES
    KISS, T
    ACTA TECHNICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 89 (1-2): : 213 - 236
  • [10] Temperature-compensated crystal oscillator simulation in stress compensated cut crystal resonators
    Haga, Ryo
    Hayashi, Rifwa
    Hanada, Yosuke
    Sato, Takayuki
    Watanabe, Yasuaki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (07)