Synthesis of nitric oxide-releasing silica nanoparticles

被引:164
|
作者
Shin, Jae Ho [1 ]
Metzger, Sara K. [1 ]
Schoenfisch, Mark H. [1 ]
机构
[1] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
关键词
D O I
10.1021/ja0674338
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The synthesis and characterization of a new nitric oxide (NO)-releasing scaffold prepared from amine-functionalized silica nanoparticles are reported. Inorganic-organic hybrid silica was prepared via cocondensation of tetraethoxy- or tetramethoxysilane (TEOS or TMOS) and aminoalkoxysilane with appropriate amounts of ethanol (or methanol), water, and ammonia. The amine functional groups in the silica were converted to N-diazeniumdiolate NO donors via exposure to high pressures of NO (5 atm) under basic conditions. Control over both the structure and concentration of the silane precursors (i.e., tetraalkoxy- and aminoalkoxysilanes) and specific synthetic conditions allowed for the preparation of NO donor silica particles of widely varying sizes (d = 20-500 nm), NO payloads (50-1780 nmol center dot mg(-1)), maximum amounts of NO released (10-5500 ppb center dot mg(-1)), half-lives (0.1-12 h), and NO release durations (up to 30 h). The silica nanoparticles were characterized by solid-state Si-29 nuclear magnetic resonance (NMR), atomic force microscopy (AFM), elemental analysis, and gas adsorption-desorption isotherms. The advantages of silica-derived NO storage/delivery systems over previously reported macromolecular NO donors include the ability to (1) store large quantities of NO, (2) modulate NO release kinetics, and (3) readily tune particle size based on the composition of the particle. In addition, a one-pot strategy for preparing the NO donor silica allows for straightforward, high-throughput synthesis and purification.
引用
收藏
页码:4612 / 4619
页数:8
相关论文
共 50 条
  • [1] Synthesis of nitric oxide-releasing silica nanoparticles
    Jae, Ho Shin
    Metzger, Sara K.
    Schoenfisch, Mark H.
    Journal of the American Chemical Society, 2007, 129 (15): : 4612 - 4619
  • [2] Synthesis of nitric oxide-releasing S-nitrosothiol silica nanoparticles
    Riccio, Daniel A.
    Nugent, Julia L.
    Schoenfisch, Mark H.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [3] Bactericidal efficacy of nitric oxide-releasing silica nanoparticles
    Hetrick, Evan M.
    Shin, Jae Ho
    Stasko, Nathan A.
    Johnson, C. Bryce
    Wespe, Daniel A.
    Holmuhamedov, Ekhson
    Schoenfisch, Mark H.
    ACS NANO, 2008, 2 (02) : 235 - 246
  • [4] Synthesis of nitric oxide-releasing gold nanoparticles
    Rothrock, AR
    Donkers, RL
    Schoenfisch, MH
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (26) : 9362 - 9363
  • [5] Nitric oxide-releasing silica nanoparticles with varied surface hydrophobicity
    Carpenter, Alexis W.
    Johnson, Justin A.
    Schoenfisch, Mark H.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2014, 454 : 144 - 151
  • [6] Nitric oxide-releasing ruthenium nanoparticles
    Ho, Chi-Ming
    Liao, Kai-Jun
    Lok, Chun-Nam
    Che, Chi-Ming
    CHEMICAL COMMUNICATIONS, 2011, 47 (38) : 10776 - 10778
  • [7] Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles
    Hetrick, Evan M.
    Shin, Jae Ho
    Paul, Heather S.
    Schoenfisch, Mark H.
    BIOMATERIALS, 2009, 30 (14) : 2782 - 2789
  • [8] Influence of Scaffold Size on Bactericidal Activity of Nitric Oxide-Releasing Silica Nanoparticles
    Carpenter, Alexis W.
    Slomberg, Danielle L.
    Rao, Kavitha S.
    Schoenfisch, Mark H.
    ACS NANO, 2011, 5 (09) : 7235 - 7244
  • [9] Nitric oxide-releasing porous silicon nanoparticles
    Morteza Hasanzadeh Kafshgari
    Alex Cavallaro
    Bahman Delalat
    Frances J Harding
    Steven JP McInnes
    Ermei Mäkilä
    Jarno Salonen
    Krasimir Vasilev
    Nicolas H Voelcker
    Nanoscale Research Letters, 9
  • [10] Nitric oxide-releasing porous silicon nanoparticles
    Kafshgari, Morteza Hasanzadeh
    Cavallaro, Alex
    Delalat, Bahman
    Harding, Frances J.
    McInnes, Steven J. P.
    Makila, Ermei
    Salonen, Jarno
    Vasilev, Krasimir
    Voelcker, Nicolas H.
    NANOSCALE RESEARCH LETTERS, 2014, 9 : 1 - 9