Bifurcations of limit cycles from cubic Hamiltonian systems with a center and a homoclinic saddle-loop

被引:7
|
作者
Zhao, YL [1 ]
Zhang, ZF
机构
[1] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Peking Univ, Dept Math, Beijing 100871, Peoples R China
关键词
D O I
10.5565/PUBLMAT_44100_08
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved in this paper that the maximum number of limit cycles of system integral dx/dt = y, dy/dt = kx - (k+1)x(2) + x(3) +epsilon>(*) over bar *(alpha + betax gamma alpha (2))y is equal to two in the finite plane, where k > 11+root 33/4, 0 < /<epsilon>/ much less than 1, /alpha/ + /beta/ + /gamma/ not equal 0 This is partial answer to the seventh question in [2], posed by Arnold.
引用
收藏
页码:205 / 235
页数:31
相关论文
共 50 条