CD133+ and CD133- glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles

被引:873
|
作者
Beier, Dagmar
Hau, Peter
Proescholdt, Martin
Lohmeier, Annette
Wischhusen, Joerg
Oefner, Peter J.
Aigner, Ludwig
Brawanski, Alexander
Bogdahn, Ulrich
Beier, Christoph P.
机构
[1] Univ Regensburg, Dept Neurol, VW Jr Grp, D-93053 Regensburg, Germany
[2] Univ Regensburg, Lab Neurooncol, D-93053 Regensburg, Germany
[3] Univ Regensburg, Dept Neurosurg, D-8400 Regensburg, Germany
[4] Univ Regensburg, Inst Funct Genom, D-8400 Regensburg, Germany
[5] Univ Wurzburg, Jr Res Grp, Interdisciplinary Ctr Clin Res, Wurzburg, Germany
[6] Univ Wurzburg, Tumor Progress & Immune Escape, Clin Gynecol & Obstet, Wurzburg, Germany
关键词
D O I
10.1158/0008-5472.CAN-06-4180
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Although glioblastomas show the same histologic phenotype, biological hallmarks such as growth and differentiation properties vary considerably between individual cases. To investigate whether different subtypes of glioblastomas might originate from different cells of origin, we cultured tumor cells from 22 glioblastomas under medium conditions favoring the growth of neural and cancer stem cells (CSC). Secondary glioblastoma (n = 7)-derived cells did not show any growth in the medium used, suggesting the absence of neural stem cell-like tumor cells. In contrast, 11/15 primary glioblastomas contained a significant CD133(+) subpopulation that displayed neurosphere-like, nonadherent growth and asymmetrical cell divisions yielding cells expressing markers characteristic for all three neural lineages. Four of 15 cell lines derived from primary glioblastomas grew adherently in vitro and were driven by CD133(-) tumor cells that fulfilled stem cell criteria. Both subtypes were similarly tumorigenic in nude mice in vivo. Clinically, CD133- glioblastomas were characterized by a lower proliferation index, whereas glial fibrillary acidic protein staining was similar. GeneArray analysis revealed 117 genes to be differentially expressed by these two subtypes. Together, our data provide first evidence that CD133(+) CSC maintain only a subset of primary glioblastomas. The remainder stems from previously unknown CD133- tumor cells with apparent stem cell-like properties but distinct molecular profiles and growth characteristics in vitro and in vivo.
引用
收藏
页码:4010 / 4015
页数:6
相关论文
共 50 条
  • [1] CD133+ and CD133- Cancer stem cells in glioblastoma
    Beier, D.
    Hau, P.
    Proescholdt, M.
    Lohmeier, A.
    Aigner, L.
    Brawanski, A.
    Bogdahn, U.
    Beier, C. P.
    NEURO-ONCOLOGY, 2006, 8 (04) : 317 - 317
  • [2] Transcriptional Profiles of CD133+ and CD133- Glioblastoma-Derived Cancer Stem Cell Lines Suggest Different Cells of Origin
    Lottaz, Claudio
    Beier, Dagmar
    Meyer, Katharina
    Kumar, Praveen
    Hermann, Andreas
    Schwarz, Johannes
    Junker, Markus
    Oefner, Peter J.
    Bogdahn, Ulrich
    Wischhusen, Joerg
    Spang, Rainer
    Storch, Alexander
    Beier, Christoph P.
    CANCER RESEARCH, 2010, 70 (05) : 2030 - 2040
  • [3] Differential characteristics of CD133+ and CD133- Jurkat cells
    Anbarlou, Azadeh
    Atashi, Amir
    Soleimani, Masoud
    AkhavanRahnama, Mahshid
    Bohloli, Mahbobeh
    Mossahebi-Mohammadi, Majid
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2015, 51 (06) : 556 - 561
  • [4] IDENTIFICATION OF CD133-/TELOMERASELOW PROGENITOR CELLS IN GLIOBLASTOMA-DERIVED CANCER STEM STELL LINES
    Beier, D.
    Beier, F.
    Aschenbrenner, I.
    Hildebrandt, G. C.
    Tim, B. H.
    Beier, C. P.
    NEURO-ONCOLOGY, 2010, 12 : 49 - 49
  • [5] Identification of CD133-/Telomeraselow Progenitor Cells in Glioblastoma-Derived Cancer Stem Cell Lines
    Beier, Fabian
    Beier, Christoph P.
    Aschenbrenner, Ines
    Hildebrandt, Gerhard C.
    Bruemmendorf, Tim H.
    Beier, Dagmar
    CELLULAR AND MOLECULAR NEUROBIOLOGY, 2011, 31 (03) : 337 - 343
  • [6] Transforming growth factor-β mimics the key proteome properties of CD133- differentiated and CD133+ cancer stem cells in glioblastoma
    Bryukhovetskiy, Igor
    Shevchenko, Valeriy
    Arnotskaya, Natalia
    Kushnir, Tatyana
    Pak, Oleg
    Victor, Zgoda
    Zaitsev, Sergei
    Khotimchenko, Yuri
    Bryukhovetskiy, Andrey
    Sharma, Aruna
    Sharma, Hari Shanker
    NOVEL THERAPEUTIC ADVANCES IN GLIOBLASTOMA, 2020, 151 : 219 - 242
  • [7] CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors
    Shmelkov, Sergey V.
    Butler, Jason M.
    Hooper, Andrea T.
    Hormigo, Adilia
    Kushner, Jared
    Milde, Till
    St. Clair, Ryan
    Baljevic, Muhamed
    White, Ian
    Jin, David K.
    Chadburn, Amy
    Murphy, Andrew J.
    Valenzuela, David M.
    Gale, Nicholas W.
    Thurston, Gavin
    Yancopoulos, George D.
    D'Angelica, Michael
    Kemeny, Nancy
    Lyden, David
    Rafii, Shahin
    JOURNAL OF CLINICAL INVESTIGATION, 2008, 118 (06): : 2111 - 2120
  • [8] Differential characteristics of CD133+ and CD133− Jurkat cells
    Azadeh Anbarlou
    Amir Atashi
    Masoud Soleimani
    Mahshid AkhavanRahnama
    Mahbobeh Bohloli
    Majid Mossahebi-Mohammadi
    In Vitro Cellular & Developmental Biology - Animal, 2015, 51 : 556 - 561
  • [9] Differential expression profile analysis of DNA damage repair genes in CD133+/CD133- colorectal cancer cells
    Lu, Yuhong
    Zhou, Xin
    Zeng, Qingliang
    Liu, Daishun
    Yue, Changwu
    ONCOLOGY LETTERS, 2017, 14 (02) : 2359 - 2368
  • [10] Hexokinase II in CD133+ and CD133- Hepatoma BEL-7402 Cells
    Gong, Lei
    Cui, Zhuqingqing
    Yu, Xin
    Wei, Yuhua
    Peng, Jirun
    Leng, Xisheng
    PATHOLOGY & ONCOLOGY RESEARCH, 2012, 18 (02) : 377 - 381